精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=xex+ex(e为自然对数的底)
(1)求曲线y=f(x)在点(1,f(1))处的切线方程
(2)求y=f(x)的极小值点.

分析 (1)求出函数的导数,计算f(1),f′(1),求出切线方程即可;(2)解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值点即可.

解答 解:(1)∵f(x)=xex+ex
∴f′(x)=(x+2)ex
而f(1)=2e,f′(1)=3e,
故切线方程是:y-2e=3e(x-1),
整理得:3ex-y-e=0;
(2)由(1)令f′(x)>0,解得:x>-2,
令f′(x)<0,解得:x<-2,
故f(x)在(-∞,-2)递减,在(-2,+∞)递增,
故x=-2是函数的极小值点.

点评 本题考查了切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设各项均为正的等比数列{an}满足a4a8=3a7,则log3(a1a2…a9)等于(  )
A.38B.39C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$不共线,若$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow{b}$,则四边形ABCD是(  )
A.梯形B.平行四边形C.矩形D.菱形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数$f(x)=\frac{{{e^2}{x^2}+1}}{x},g(x)=\frac{{{e^2}x}}{e^x}$,对任意x1,x2∈(0,+∞),不等式$\frac{{g({x_1})}}{k}≤\frac{{f({x_2})}}{k+1}$恒成立,则正数k的取值范围是(  )
A.[1,+∞)B.(1,+∞)C.$[\frac{1}{2e-1},+∞)$D.$(\frac{1}{2e-1},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=xlnx的最小值为(  )
A.-e-1B.-eC.e2D.-$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=x2+bx+c(b,c∈R),若对任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,则b的取值范围是(  )
A.[0,2]B.(0,2]C.(-2,2)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设正四面体ABCD的四个面BCD,ACD,ABD,ABC的中心,分别为O1,O2,O3,O4则直线O1O2与O3O4所成角的大小为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点 A(-4,0),B(4,0),C(0,4),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则 b的取值范围是(  )
A.$({0,4-2\sqrt{2}})$B.$({4-2\sqrt{2},2})$C.$({4-2\sqrt{2},\frac{4}{3}}]$D.$({\frac{4}{3},2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,有一直径为8米的半圆形空地,现计划种植果树,但需要有辅助光照.半圆周上的C处恰有一可旋转光源满足果树生长的需要,该光源照射范围是$∠ECF=\frac{π}{6}$,点E,F在直径AB上,且$∠ABC=\frac{π}{6}$.
(1)若$CE=\sqrt{13}$,求AE的长;
(2)设∠ACE=α,求该空地种植果树的最大面积.

查看答案和解析>>

同步练习册答案