精英家教网 > 高中数学 > 题目详情
甲、乙两人从4门课程中各选修2门,则甲、乙两人所选的课程中有一门相同的选法有(  )
A、6种B、12种
C、16种D、24
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.
解答: 解:根据题意,采用间接法:
①由题意可得,所有两人各选修2门的种数C42C42=36,
②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,
故只恰好有1门相同的选法有36-6-6=24种.
故选D.
点评:本题考查组合公式的运用,解题时注意事件之间的关系,选用间接法是解决本题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,P是直线2x+2y-1=0上的一点,Q是射线OP上的一点,满足|OP|•|OQ|=1.
(Ⅰ)求Q点的轨迹;
(Ⅱ)设点M(x,y)是(Ⅰ)中轨迹上任意一点,求x+7y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-
y2
m2
=1的右焦点到其渐近线的距离等于
3
,则该双曲线的离心率等于(  )
A、
1
2
B、
3
2
C、2
D、
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数x、y满足
2
x
+
1
y
=1,则x+2y的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+φ),其中φ∈(0,2π),若f(x)≤|f(
π
6
)|对x∈R恒成立,且f(
π
2
)<f(π),则f(x)的单调递增区间是(  )
A、[kπ+
π
6
,kπ+
3
](k∈Z)
B、[kπ-
π
3
,kπ+
π
6
](k∈Z)
C、[kπ,kπ+
π
2
](k∈Z)
D、[kπ-
π
2
,kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如右表:(单位:人)
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望 EX.
附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

若 a>0,b>0,且
1
a
+
1
b
=
ab
,求a3+b3的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知线性变化T把点(1,-1)变成了(1,0),把点(1,1)变成了点(0,1).
(1)求变换T所对应的矩阵M;
(2)求直线y=-1在变换T的作用下得到直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x-
1
x
>0成立的充分不必要条件是(  )
A、x>-1
B、x>l
C、-l<x<0或x>l
D、x<-1或0<x<l

查看答案和解析>>

同步练习册答案