精英家教网 > 高中数学 > 题目详情
函数f(x)的定义域为开区间(a,b),导函数f'(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点和极大值点分别有(  )
分析:根据题目给出的导函数的图象,得到导函数在给定定义域内不同区间上的符号,由此判断出原函数在各个区间上的单调性,从而判断出函数取得极大值的情况.
解答:解:如图,不妨设导函数的零点分别为x1,x2,x3,x4
由导函数的图象可知:
当x∈(a,x1)时,f′(x)>0,f(x)为增函数,
当x∈(x1,x2)时,f′(x)<0,f(x)为减函数,
当x∈(x2,x3)时,f′(x)>0,f(x)为增函数,
当x∈(x3,x4)时,f′(x)>0,f(x)为增函数,
当x∈(x4,b)时,f′(x)<0,f(x)为减函数,
由此可知,函数f(x)在开区间(a,b)内有两个极大值点一个极大值点,
分别是当x=x1时和x=x4时函数取得极大值,当x=x2时函数取得极小值.
故选C.
点评:本题考查了利用导函数研究函数的极值,由导函数在给定区间内的符号可以判断原函数的单调性,连续函数在某点处先增后减,该点是极大值点,先减后增,该点是极小值点.此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的奇偶性并证明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域是[0,1),则F(x)=f[log 
12
(3-x)
]的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为(-1,1),它在定义域内既是奇函数又是增函数,且f(a-3)+f(4-2a)<0,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为[-1,2],则函数
f(x+2)
x
的定义域为(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步练习册答案