精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的长轴为AB,过点B的直线l与x轴垂直.直线(2-k)x-(1+2k)y+(1+2k)=0(k∈R)所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率e=
3
2

(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连接AQ延长交直线l于点M,N为MB的中点.试判断直线QN与以AB为直径的圆O的位置关系.
分析:(1)将直线方程整理得,解方程组求得直线所经过的定点,进而求得b,进而根据离心率求得a,则椭圆的方程可得.
(2)设P(x0,y0)代入椭圆方程,进而表示出Q的坐标,求得|OQ|推断出Q点在以O为圆心,2为半径的圆上.根据点A的坐标表示出直线AQ的方程,令x=0,表示出M和N的坐标,代入
NQ
OQ
求得结果为0,进而可推知OQ⊥QN,推断出直线QN与圆O相切.
解答:解:(1)将(2-k)x-(1+2k)y+(1+2k)=0
整理得(-x-2y+2)k+2x-y+1=0
解方程组
-x-2y+2=0
2x-y+1=0

得直线所经过的定点(0,1),所以b=1.
由离心率e=
3
2
得a=2.
所以椭圆的标准方程为
x2
4
+y2=1


(2)设P(x0,y0),则
x02
4
+y02=1

∵HP=PQ,∴Q(x0,2y0).∴OQ=
x02+(2y02)
=2

∴Q点在以O为圆心,2为半径的圆上.
即Q点在以AB为直径的圆O上.
又A(-2,0),
∴直线AQ的方程为y=
2y0
x0+2
(x+2)

令x=2,得M(2,
8y0
x0+2
)
.又B(2,0),N为MB的中点,
N(2,
4y0
x0+2
)

OQ
=(x0,2y0)
NQ
=(x0-2,
2x0y0
x0+2
)

OQ
NQ
=x0(x0-2)+2y0
2x0y0
x0+2
=x0(x0-2)+
4x0y02
x0+2
=x0(x0-2)+
x0(4-x02)
x0+2

=x0(x0-2)+x0(2-x0)=0.
OQ
NQ
.∴直线QN与圆O相切.
精英家教网
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了考生综合分析问题和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点C(
3
2
3
2
)
且离心率为
6
3
,A、B是长轴的左右两顶点,P为椭圆上意一点(除A,B外),PD⊥x轴于D,若
PQ
QD
,λ∈(-1,0)

(1)试求椭圆的标准方程;
(2)P在C处时,若∠QAB=2∠PAB,试求过Q、A、D三点的圆的方程;
(3)若直线QB与AP交于点H,问是否存在λ,使得线段OH的长为定值,若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)如图.已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=
3
2
,F1为椭圆的左焦点且
AF1
F1B
=1.
(I)求椭圆的标准方程;
(II)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,F1,F2分别是椭圆的左、右焦点,B为椭圆的上顶点且△BF1F2的周长为4+2
3

(1)求椭圆的方程;
(2)是否存在这样的直线使得直线l与椭圆交于M,N两点,且椭圆右焦点F2恰为△BMN的垂心?若存在,求出直线l的方程;若不存在,请说明由..

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•崇明县二模)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为
1
3
|OF1|.
(1)求a,b满足的关系式;
(2)当点M在椭圆上变化时,求证:∠F1MF2的最大值为
π
2

(3)设圆x2+y2=r2(0<r<b),G是圆上任意一点,过G作圆的切线交椭圆于Q1,Q2两点,当OQ1⊥OQ2时,求r的值.(用b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.设直线PF1、PF2的斜率分别为k1、k2
(Ⅰ)证明:
1
k1
-
3
k2
=2

(Ⅱ)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案