精英家教网 > 高中数学 > 题目详情
13.已知-$\frac{1}{2}<a<$0,试将下列各数按大小顺序排列:A=1+a2,B=1-a2,C=$\frac{1}{1+a}$,D=$\frac{1}{1-a}$.

分析 取特殊值,进行计算,即可得出结论.

解答 解:∵-$\frac{1}{2}<a<$0,
∴取a=-$\frac{1}{4}$,A=1+a2=$\frac{17}{16}$,B=1-a2=$\frac{15}{16}$,C=$\frac{1}{1+a}$=$\frac{4}{3}$,D=$\frac{1}{1-a}$=$\frac{4}{5}$.
∴D<B<A<C.

点评 本题考查大小比较,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.当x∈(0,2)时,求函数f(x)=ex-ex的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=3,an+1=2an-n+1(n∈N*).
(1)若bn=an-n(n∈N*),求证数列{bn}成等比数列;
(2)设数列{an}的前n项之和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.△ABC中,tanB=-3,则cosB=-$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(sin15°-cos15°)2的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C所对的边分别是a,b,c,a=2$\sqrt{3}$,且2sin(B-$\frac{π}{12}$)cos(B-$\frac{π}{12}$)+2sin2(C-$\frac{π}{3}$)=1.
(1)当b≠c时,求A的大小;
(2)当A=$\frac{π}{3}$时,△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一点A从数轴上表示+2的A点开始连续移动,第一次先向左运动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…
求:(1)写出第一次移动后这个点在数轴上表示的数;
(2)写出第二次移动后这个点在数轴上表示的数;
(3)写出第五次移动后这个点在数轴上表示的数;
(4)写出第n次移动后这个点在数轴上表示的数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在极坐标系(ρ,θ)(ρ>0,0<θ<$\frac{π}{2}$)中,曲线ρ=$\sqrt{3}$sinθ与ρ=cosθ的交点的直角坐标系坐标为($\frac{3}{4}$,$\frac{\sqrt{3}}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式ax2+ax+1≥0对一切x∈R恒成立,则实数a的取值范围是(  )
A.0<a<4B.0≤a<4C.0<a≤4D.0≤a≤4

查看答案和解析>>

同步练习册答案