精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=x2+mx+n(m、n∈R)的两个零点分别在(0,1)与(1,2)内,则(m+1)2+(n-2)2的取值范围是(  )
A、[2,
5
]
B、(
2
5
)
C、[2,5]
D、(2,5)
考点:简单线性规划,二次函数的性质
专题:计算题,直线与圆
分析:由条件可得,
f(0)>0
f(1)<0
f(2)>0
,化简得到关于m,n的不等式组,在平面直角坐标系中,作出不等式组表示的区域,
再由(m+1)2+(n-2)2表示的几何意义是点(-1,2)到区域内的点的距离的平方,由图象观察,即可得到取值范围.
解答: 解:由于二次函数f(x)=x2+mx+n(m、n∈R)的两个零点
分别在(0,1)与(1,2)内,
f(0)>0
f(1)<0
f(2)>0
即有
n>0
1+m+n<0
4+2m+n>0

在平面直角坐标系中,作出不等式组表示的区域,
而(m+1)2+(n-2)2表示的几何意义是点(-1,2)
到区域内的点的距离的平方,
求得点(-1,2)到直线m+n+1=0的距离为
|-1+2+1|
2
=
2

点(-1,2)到点(-2,0)的距离为
5

故(m+1)2+(n-2)2的取值范围是(2,5).
故选D.
点评:本题考查二次函数与二次方程的关系,考查二元不等式表示的平面区域,考查两点的距离和点到直线的距离公式的运用,考查数形结合的思想方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.
(1)若a=1,b=3,按上述规则操作三次,则第三次扩充所得的新数是
 

(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n-1(m,n为正整数),则m+n的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
2
ax2+bx(a>0)且导数f′(1)=0.
(Ⅰ)试用含有a的式子表示b,并求f(x)单调区间;
(Ⅱ)若f(x)<2-
1
2
ax2对一切正数x都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
2012-|x|
|x|+2012
在区间[a,b](a,b为整数)上的值域是[0,1],则满足条件的数对(a,b)共有
 
对.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
4
-y2=1的焦点坐标是(  )
A、(±
3
,0)
B、(±
5
,0)
C、(0,±
3
D、(0,±
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M经过第一象限,与y轴相切于点O(0,0),且圆M上的点到x轴的最大距离为2,过点P(0,-1)作直线l.
(1)求圆M的标准方程;
(2)当直线l与圆M相切时,求直线l的方程;
(3)当直线l与圆M相交于A、B两点,且满足向量
PA
PB
,λ∈[2,+∞)时,求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

以抛物线y=
1
4
x2的焦点为圆心,3为半径的圆与直线4x+3y+2=0相交所得的弦的长度是(  )
A、
4
5
2
B、4
2
C、2
2
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(2x)=x2+2x,则f(x)的单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
e1
e2
是平面内两个不共线的非零向量,
AB
=2
e1
+
e2
BE
=-
e1
e2
EC
=-2
e1
+
e2
,且A,E,C三点共线.
(1)求实数λ的值;
(2)若
e1
=(2,1),
e2
=(2,-2),求
BC
的坐标.

查看答案和解析>>

同步练习册答案