精英家教网 > 高中数学 > 题目详情

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码

1

2

3

4

5

6

年产量(万吨)

6.6

6.7

7

7.1

7.2

7.4

(1)根据表中数据,建立关于的线性回归方程

(2)根据线性回归方程预测2019年该地区该农产品的年产量.

附:. 参考数据:

【答案】(1)(2)7.72万吨

【解析】

(1)本题首先可以通过表格计算出以及,然后计算出的值,再通过计算出以及计算出的值,最后即可得出关于的线性回归方程,

(2)直接将2019年所对应的年份代码带入线性回归方程即可得出结果。

(1)由题意可知:

所以

所以关于的线性回归方程为

(2)由(1)可得,当年份为2019年时,年份代码,此时,所以,可预测2019年该地区该农产品的年产量约为万吨。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图一,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,且该四棱锥的俯视图和侧视图如图二所示.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数是偶函数,设

(1)求的解析式;

(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;

(3)若方程有三个不同的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥P-ABCD底面ABCD是直角梯形,ABCD,DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD是以AD为底的等腰三角形.

()证明:ADPB;

()若四棱锥P-ABCD的体积等于平面CMN∥平面PAD,且分别交PB,AB于点M,N,试确定M,N的位置并求△CMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校为丰富师生课余活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地,如图,点上,点上,且点在斜边上,已知 米, 米, .设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正常数)

(1)试用表示,并求的取值范围;

(2)求总造价关于面积的函数;

(3)如何选取,使总造价最低(不要求求出最低造价)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体中, 分别是棱 的中点,点 分别在棱 上移动,且.

(1)当时,证明:直线平面

(2)是否存在,使面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,.

(1)证明:不论为何实数,f(x)均为增函数;

(2)试确定的值,使f(-x)+ f(x)=0成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最小值1,最大值9.

1)求实数ab的值;

2)设,若不等式在区间上恒成立,求实数k的取值范围;

3)设),若函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先阅读下列不等式的证法,再解决后面的问题:

已知,求证:.

证明:构造函数

.

因为对一切,恒有

所以,从而得.

1)若,请写出上述结论的推广式;

2)参考上述证法,对你推广的结论加以证明.

查看答案和解析>>

同步练习册答案