【题目】某地区某农产品近几年的产量统计如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
年产量(万吨) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(1)根据表中数据,建立关于的线性回归方程;
(2)根据线性回归方程预测2019年该地区该农产品的年产量.
附:,. 参考数据:
科目:高中数学 来源: 题型:
【题目】如图一,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,且该四棱锥的俯视图和侧视图如图二所示.
(1)证明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,且函数是偶函数,设
(1)求的解析式;
(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;
(3)若方程有三个不同的实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD是以AD为底的等腰三角形.
(Ⅰ)证明:AD⊥PB;
(Ⅱ)若四棱锥P-ABCD的体积等于,平面CMN∥平面PAD,且分别交PB,AB于点M,N,试确定M,N的位置,并求△CMN的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我校为丰富师生课余活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地,如图,点在上,点在上,且点在斜边上,已知, 米, 米, .设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正常数)
(1)试用表示,并求的取值范围;
(2)求总造价关于面积的函数;
(3)如何选取,使总造价最低(不要求求出最低造价)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为2的正方体中, , , , 分别是棱, , , 的中点,点, 分别在棱, 上移动,且.
(1)当时,证明:直线平面;
(2)是否存在,使面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在区间上有最小值1,最大值9.
(1)求实数a,b的值;
(2)设,若不等式在区间上恒成立,求实数k的取值范围;
(3)设),若函数有三个零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先阅读下列不等式的证法,再解决后面的问题:
已知,,求证:.
证明:构造函数,
即
.
因为对一切,恒有,
所以,从而得.
(1)若,,请写出上述结论的推广式;
(2)参考上述证法,对你推广的结论加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com