精英家教网 > 高中数学 > 题目详情

已知一条曲线轴右侧,上每一点到点的距离减去它到轴距离的差都是1.
(1)求曲线的方程;
(2)设直线交曲线两点,线段的中点为,求直线的一般式方程.

(1);(2)

解析试题分析:(1)设是曲线上任意一点,利用两点之间的距离公式建立关于的方程,化简即为曲线的方程;(2)设,然后利用点差法,结合中点坐标公式与斜率进行转换即可求得直线的斜率,最后利用点斜式,通过化简可求得直线的一般式方程.
试题解析:(1)设是曲线上任意一点,那么点满足:
,化简得
(2)设,由
②得:,由于易知的斜率存在,
,即,所以,故的一般式方程为
考点:1、抛物线方程的求法;2、直线与抛物线的位置关系;3、点差法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.
(1)求椭圆C的方程;
(2)AB为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设t,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于,设 .
(1)证明: 成等比数列;
(2)若的坐标为,求椭圆的方程;
(3)在(2)的椭圆中,过的直线与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定点和定直线,动点与定点的距离等于点到定直线的距离,记动点的轨迹为曲线.
(1)求曲线的方程.
(2)若以为圆心的圆与曲线交于不同两点,且线段是此圆的直径时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,过点A(-2,-1)椭圆C=1(ab>0)的左焦点为F,短轴端点为B1B2=2b2.
(1)求ab的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.若AQ·AR=3OP2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的离心率为轴被曲线截得的线段长等于的短轴长。轴的交点为,过坐标原点的直线相交于点,直线分别与相交于点

(1)求的方程;
(2)求证:
(3)记的面积分别为,若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线x2=1.
 
(1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.
(2)设(1)中椭圆的左、右顶点分别为AB,右焦点为F,直线l为椭圆的右准线,Nl上的一动点,且在x轴上方,直线AN与椭圆交于点M.若AMMN,求∠AMB的余弦值;
(3)设过AFN三点的圆与y轴交于PQ两点,当线段PQ的中点为(0,9)时,求这个圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(ab>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.

查看答案和解析>>

同步练习册答案