精英家教网 > 高中数学 > 题目详情
建造一个容积为8m3,深为2m的长方体无盖水池,如果池底的造价为每平方米120元,池壁的造价为每平方米80元,
(1)设池底的长为x m,试把水池的总造价S表示成关于x的函数;
(2)如何设计池底的长和宽,才能使总造价S最低,求出该最低造价.
分析:(1)根据池底的长,表示出宽,先根据题意求得池底的造价,进而表示池壁的面积根据价格算出池壁的造价,二者相加即可表示出总造价.
(2)根据(1)的表达式,利用均值不等式的性质求得S的最小值.
解答:解:(1)∵池底的长为xm,故宽为
4
x
m

S=4×120+2×(2x+
8
x
)×80=480+320(x+
4
x
)

(2)∵S=480+320(x+
4
x
)
≥480+320×4=1760
当且仅当x=
4
x
,即x=2时等号成立
∴当池底的长为2m,宽也是2m时,总造价最低为1760元.
点评:本题主要考查了基本不等式在最值问题中的应用.解题时注意等号成立的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

建造一个容积为8m3,深为2m的长方形无盖水池,如果池底和池壁的造价分别为120元/m2和80元/m2
(1)求总造价关于底面一边长的函数解析式,并指出函数的定义域;
(2)求总造价的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

建造一个容积为8m3,深为2m的长方体无盖水池,池底和池壁的造价每平方米分别为120元和80元,如果水池的总造价为1 760元,则长方体底面一边长为
2
2
米.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校要建造一个容积为8m3,深为2m的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为
3520
3520
元.

查看答案和解析>>

科目:高中数学 来源: 题型:

建造一个容积为8m3,深为2m的长方体元盖水池,如果池底和池壁的造价分别为每平方米120元和80元,问水池的长、宽各为多少米时总造价最低?最低造价是多少元?

查看答案和解析>>

同步练习册答案