精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+
y2
1
=1
,点M(2,3)过M点引直线交椭圆于A、B两点,求弦AB的中点P的轨迹方程.
分析:利用点差法来求弦的中点问题.可先设弦AB的中点P以及A,B点的坐标,把直线AB斜率分别用P点坐标以及M点坐标表示,化简即可得含x,y的方程,即弦AB的中点P的轨迹方程.
解答:解:设A(x1,y1)、B(x2,y2)、P(x,y),直线AB:y-3=k(x-3)
则x12+4y12=4①,x22+4y22=4②
①-②得:(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0
整理得:
4(y1+y2)
x1+x2
y1-y2
x1-x2
=-1

化简得:k=
y1-y2
x1-x2
=-
4y
x
代入y-3=k(x-2)
整理得:x2+4y2-3x-12y=0,即为AB的中点P的轨迹方程
点评:本题主要考查了点差法求中点弦斜率问题,属于圆锥曲线的常规题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x24
+y2=1
的左、右两个顶点分别为A,B,直线x=t(-2<t<2)与椭圆相交于M,N两点,经过三点A,M,N的圆与经过三点B,M,N的圆分别记为圆C1与圆C2
(1)求证:无论t如何变化,圆C1与圆C2的圆心距是定值;
(2)当t变化时,求圆C1与圆C2的面积的和S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+y2=1
,过E(1,0)作两条直线AB与CD分别交椭圆于A,B,C,D四点,已知kABkCD=-
1
4

(1)若AB的中点为M,CD的中点为N,求证:①kOMkON=-
1
4
为定值,并求出该定值;②直线MN过定点,并求出该定点;
(2)求四边形ACBD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
4
+y2=1
,弦AB所在直线方程为:x+2y-2=0,现随机向椭圆内丢一粒豆子,则豆子落在图中阴影范围内的概率为
π-2
π-2

(椭圆的面积公式S=π•a•b,其中a是椭圆长半轴长,b是椭圆短半轴长)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区三模)已知椭圆
x2
4
+y2=1
的焦点分别为F1,F2,P为椭圆上一点,且∠F1PF2=90°,则点P的纵坐标可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x24
+y2=1
,过点M(-1,0)作直线l交椭圆于A,B两点,O是坐标原点.
(1)求AB中点P的轨迹方程;
(2)求△OAB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

同步练习册答案