精英家教网 > 高中数学 > 题目详情

【题目】如图,为圆的直径,点在圆上,矩形所在平面和圆所在的平面互相垂直,已知

1)求证:平面平面

2)求四棱锥的体积.

【答案】1)证明见解析;(2.

【解析】

1)由题易证得到AFCAFBF,利用线面垂直的判定可得AF⊥平面CBF,从而得到平面DAF⊥平面CBF

2)几何体F-ABCD是四棱锥,连接OEOF,取EF的中点G,连接OG,可知点F到平面ABCD的距离等于OG,再由棱锥体积公式求解.

1)证明:如图,∵矩形ABCD,∴CBAB

又∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB

CB⊥平面ABEF

AF平面ABEF,∴AFCB

又∵AB为圆O的直径,∴AFBF

CBBF=BCBBF平面CBF,∴AF⊥平面CBF

AF平面DAF,∴平面DAF⊥平面CBF

2)解:几何体F-ABCD是四棱锥,连接OEOF,则OE=OF=EF=1

∴△OEF是等边三角形,取EF的中点G,连接OG,则,且OGEF

ABEF,∴OGAB

又∵平面ABCD⊥平面ABEF

OG⊥平面ABCD

∴点F到平面ABCD的距离等于OG,又

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且圆经过椭圆C的上、下顶点.

1)求椭圆C的方程;

2)若直线l与椭圆C相切,且与椭圆相交于MN两点,证明:的面积为定值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px的焦点为F,准线方程是x=﹣1

I)求此抛物线的方程;

)设点M在此抛物线上,且|MF|=3,若O为坐标原点,求△OFM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题

1)若一条直线与两条直线都相交,那么这三条直线共面;

2)若三条直线两两平行,那么这三条直线共面;

3)若直线与直线异面,直线与直线异面,那么直线与直线异面;

4)若直线与直线垂直,直线与直线垂直,那么直线与直线平行;

其中正确的命题个数有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且asinB=bsin(A+).

(1)求A;

(2)若b,a,c成等差数列,△ABC的面积为2,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:

编号

1

2

3

4

5

年份

2014

2015

2016

2017

2018

数量(单位:辆)

37

104

147

196

216

1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;

2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年己登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:

i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;

ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)

参考公式及数据:对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读下列有关光线的入射与反射的两个事实现象:现象(1):光线经平面镜反射满足入射角与反射角相等(如图);现象(2);光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图).试结合,上述事实现象完成下列问题:

(Ⅰ)有一椭圆型台球桌,长轴长为2a,短轴长为2b.将一放置于焦点处的桌球击出.经过球桌边缘的反射(假设球的反射充全符合现象(2)),后第一次返回到该焦点时所经过的路程记为S,求S的值(用ab表示);

(Ⅱ)结论:椭圆上任点Px0y0)处的切线的方程为.记椭圆C的方程为C,在直线x4上任一点M向椭圆C引切线,切点分别为AB.求证:直线lAB恒过定点:

(Ⅲ)过点T10)的直线l(直线l斜率不为0)与椭圆C交于PQ两点,是否存在定点Ss0),使得直线SPSQ斜率之积为定值,若存在求出S坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆轴相切于点,与轴正半轴交于两点的上方),且.

1)求圆的标准方程;

2)过点作任一条直线与圆相交于两点.

①求证:为定值,并求出这个定值;

②求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直棱柱中,分别是棱上的点,且平面

1)证明:

2)若中点,求直线与直线所成角的余弦值.

查看答案和解析>>

同步练习册答案