精英家教网 > 高中数学 > 题目详情
已知三次函数时取极值,且
(Ⅰ) 求函数的表达式;
(Ⅱ)求函数的单调区间和极值;
(Ⅲ)若函数在区间上的值域为,试求、n应满足的条件。
(Ⅰ).          (Ⅱ)函数在区间上是增函数;------------------7分
在区间上是减函数;在区间上是增函数.
函数的极大值是,极小值是.           
(Ⅲ)、n应满足的条件是:,且
(Ⅰ),                                                                                      
由题意得,的两个根,
解得,.                                                                             ------------------2分
再由可得
.                 ------------------4分
(Ⅱ)
时,;当时,;------------------5分
时,;当时,;------------------6分
时,.∴函数在区间上是增函数;------------------7分
在区间上是减函数;在区间上是增函数.
函数的极大值是,极小值是.                                ------------------9分
(Ⅲ)函数的图象是由的图象向右平移个单位,向上平移4个单位得到,
所以,函数在区间上的值域为).-------------10分
,∴,即.                                                                    
于是,函数在区间上的值域为.------------------12分

的单调性知,,即
综上所述,、应满足的条件是:,且------------------14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知定义在上的两个函数的图象在点处的切线倾斜角的大小为(1)求的解析式;(2)试求实数k的最大值,使得对任意恒成立;(3)若
,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中为常数.
(1)当时,判断函数在定义域上的单调性;
(2)若函数的有极值点,求的取值范围及的极值点;
(3)求证对任意不小于3的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)   求f(x)的单调区间;
(2)   证明:lnx<

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
⑴ 设.试证明在区间  内是增函数;
⑵ 若存在唯一实数使得成立,求正整数的值;
⑶ 若时,恒成立,求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数).
(1)讨论函数f(x)的单调性;
(2)若,方程f (x) ="2" a x有惟一解时,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(I)已知函数上是增函数,求得取值范围;
(II)在(I)的结论下,设,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列函数的导数:
1.;                2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-2ax2+3x(x∈R).
(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.

查看答案和解析>>

同步练习册答案