精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,角A,B,C所对的边分别是a,b,c,已知向量
m
=(2sin(A+C), 
3
), 
n
=(cos2B, 2cos2
B
2
-1)
,且
m
n

(Ⅰ)求角B的大小;
(Ⅱ)若b=1,求△ABC面积的最大值.
分析:(Ⅰ)由条件利用两个向量共线的性质求得tan2B的值,再根据△ABC为锐角三角形,B的值.
(Ⅱ)若b=1,则由余弦定理、基本不等式求得 ac 的最大值,可得△ABC面积为
1
2
ac•sinB,求得它的最大值
解答:解:(Ⅰ)∵向量
m
=(2sin(A+C), 
3
), 
n
=(cos2B, 2cos2
B
2
-1)
,且
m
n

∴2sin(A+C)(2cos2
B
2
-1)-
3
cos2B=0,即 2sinBcosB=
3
cos2B,
∴tan2B=
sin2B
cos2B
=
3

再根据△ABC为锐角三角形,可得0<B<
π
2
,∴2B=
π
3
,B=
π
6

(Ⅱ)若b=1,则由余弦定理可得 b2=1=a2+c2-2ac•cosB≥2ac-
3
ac,
解得 ac≤
1
2-
3
=2+
3
,当且仅当a=c时,取等号,
故△ABC面积的最大值为
1
2
ac•sinB=
1
2
(2+
3
)•
1
2
=
2+
3
4
点评:本题主要考查两个向量共线的性质,正弦定理和余弦定理、基本不等式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大小;
(Ⅱ)当c=1时,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•张掖模拟)在锐角△ABC中,角A、B、C所对的边分别为a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范围;
(2)若a=
3
,求b2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函数f(x)的表达式,并指出f(x)的单调递减区间;
(2)在锐角△ABC中,角A、B、C所对的边分别为a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大小.
(Ⅱ)求函数f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)当c=2a,且b=3
7
时,求a及△ABC的面积.

查看答案和解析>>

同步练习册答案