精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB.

(1)求角B的大小;

(2)若b=3,sinC=2sinA,求a,c的值.

【答案】(1)(2)

【解析】试题分析:(1)由正弦定理,可将已知等式bsinA=acosB化为:再注意到sinA0,从而可求得的值,再注意角B的范围就可求出角B的大小;(2)由已知sinC=2sinA及正弦定理可得到c=2a,又因为b=3,由余弦定理,结合(1)结果,可得到关于a的一个方程,解此方程可得到a的值,从而得到c的值.

试题解析:(1)bsinA=acosB,由正弦定理可得, 2

即得>0,所以, 4

. 5

(2)sinC=2sinA,由正弦定理得, 6

由余弦定理, 7

, 8

解得9

. 10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知θ∈[0, ],直线xsinθ+ycosθ﹣1=0和圆C:(x﹣1)2+(y﹣cosθ)2= 相交所得的弦长为 ,则θ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中,已知,且成等差数列.

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:

K日 日期期

1日

2日

3日

4日

5日

温差x(℃)

10

11

13

12

8

发芽数y(颗)

23

25

30

26

16

(1)求这5天发芽数的中位数;

(2)求这5天的平均发芽率;

(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m,后面一天发芽的种子数为n,用(mn)的形式列出所有基本事件,并求满足“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆,圆心到抛物线准线的距离为3,点是抛物线在第一象限上的点,过点作圆的两条切线,分别与轴交于两点.

(1)求抛物线的方程;

(2)求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线斜率为1,求函数的单调区间;

(2)若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)已知,函数

)若,求曲线在点处的切线方程.

)若,求在闭区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|﹣1≤x≤2},B={x|x2﹣4x>0,x∈R},则A∩(RB)=(
A.[1,2]
B.[0,2]
C.[1,4]
D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________________元.

查看答案和解析>>

同步练习册答案