精英家教网 > 高中数学 > 题目详情

【题目】设斜率不为0的直线与抛物线交于两点,与椭圆交于两点,记直线的斜率分别为.

(1)求证:的值与直线的斜率的大小无关;

(2)设抛物线的焦点为,若,求面积的最大值.

【答案】()详见解析;()

【解析】试题分析:由直线的方程与抛物线方程联立,求得求得

再直线与椭圆方程联立,求得求的代入化简,即可得到结论

Ⅱ)由(Ⅰ)知得求得,由(1)中求得弦长,再利用点到直线的距离公式,求得点到直线的距离,即可得到面积的表达式,进而求解面积的最大值

试题解析:

Ⅰ)设直线l

联立,得,则

联立

的情况下,

所以 是一个与k无关的值.

Ⅱ)由(Ⅰ)知,而由

m=4(m=0显然不合题意),

此时

,  

到直线的距离

所以, 

(求面积的另法:将直线ly轴交点(0,4)记为E,则

,也可得到

,则

当且仅当,即时,有最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正四棱锥V﹣ABCD中(底面是正方形,侧棱均相等),AB=2,VA= ,且该四棱锥可绕着AB任意旋转,旋转过程中CD∥平面α,则正四棱锥V﹣ABCD在平面α内的正投影的面积的取值范围是(
A.[2,4]
B.(2,4]
C.[ ,4]
D.[2,2 ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温 (℃)与该小卖部的这种饮料销量(杯),得到如下数据:

日期

1月11日

1月12日

1月13日

1月14日

1月15日

平均气温(℃)

9

10

12

11

8

销量(杯)

23

25

30

26

21

(1)请根据所给五组数据,求出关于的线性回归方程

(2)据(1)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(℃),请预测该奶茶店这种饮料的销量.

(参考公式:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程有四个不同的解,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下判断正确的是(
A.函数y=f(x)为R上可导函数,则f'(x0)=0是x0为函数f(x)极值点的充要条件
B.命题“ ”的否定是“?x∈R,x2+x﹣1>0”
C.“ ”是“函数f(x)=sin(ωx+φ)是偶函数”的充要条件
D.命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣2sin2x+2 sinxcosx+1.
(1)求f(x)的最小正周期及对称中心;
(2)若x∈[﹣ ],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】医院用甲、乙两种原料为手术后的病人配营养餐,甲种原料每10g含5单位蛋白质和10单位铁质,售价3元;乙种原料每10g含7单位蛋白质和4单位铁质,售价2元,若病人每餐至少需要35单位蛋白质和40单位铁质。试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率是,一个顶点是

)求椭圆的方程;

)设是椭圆上异于点的任意两点,且.试问:直线是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举办校园科技文化艺术节,在同一时间安排《生活趣味数学》和《校园舞蹈赏析》两场讲座.已知两学习小组各有位同学,每位同学在两场讲座任意选听一场.若人选听《生活趣味数学》,其余人选听《校园舞蹈赏析》;人选听《生活趣味数学》,其余人选听《校园舞蹈赏析》.

(1)若从此人中任意选出人,求选出的人中恰有人选听《校园舞蹈赏析》的概率;

(2)若从两组中各任选人,设为选出的人中选听《生活趣味数学》的人数,求的分布列.

查看答案和解析>>

同步练习册答案