精英家教网 > 高中数学 > 题目详情
(理)已知直三棱柱中,是棱的中点.如图所示.
 
(1)求证:平面
(2)求二面角的大小.
(1)证明见解析;(2).

试题分析:(1)本题中由于是直棱柱,且底面中,即两两垂直,因此我们可以建立空间直角坐标系,用空间向量来解决立体几何问题,要证明线面垂直,只要在平面内任取两个不共线的向量如,只要计算出,就能证明线线垂直,从而得证线面垂直;(2)而要求二面角的大小,可通过求两个面的法向量的夹角来求,法向量的夹角与二面角互补或相等来求,下面就是想办法求法向量了,如平面,可设是它的法向量,利用,得到,只要令,就可得到一个法向量.
试题解析:(1)按如图所示建立空间直角坐标系.由题知,可得点

于是,
可算得
因此,

所以,

(2)设是平面的法向量.


,可得即平面的一个法向量是
由(1)知,是平面的一个法向量,
的夹角为,则
结合三棱柱可知,二面角是锐角,
∴所求二面角的大小是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,直线平面,且
,又点分别是线段的中点,且点是线段上的动点.
证明:直线平面
(2) 若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.
(1)若PM=PA,求证:MN⊥AD;
(2)若二面角M-BD-A的大小为,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.

(1)求证:平面平面EBD;
(2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,侧棱底面,过垂直点,作垂直点,平面点,且.

(1)设点上任一点,试求的最小值;
(2)求证:在以为直径的圆上;
(3)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,DAC中点,,延长AEBCF,将ABD沿BD折起,使平面ABD平面BCD,如图2所示.

(1)求证:AE⊥平面BCD
(2)求二面角A–DC–B的余弦值.
(3)在线段上是否存在点使得平面?若存在,请指明点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间直角坐标系中,已知.若分别是三棱锥坐标平面上的正投影图形的面积,则(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系中,设点是点关于坐标平面的对称点,则线段的长度等于         .

查看答案和解析>>

同步练习册答案