精英家教网 > 高中数学 > 题目详情
如图,已知PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于点C,D,若⊙O的半径为r,△PCD的周长为3r,则
求:tan∠APB.
考点:与圆有关的比例线段
专题:推理和证明
分析:连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=
3
2
r.利用Rt△BFP∽RT△OAF得出AF=
2
3
FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.
解答: 解:连接OA、OB、OP,延长BO交PA的延长线于点F.
∵PA,PB切⊙O于A、B两点,CD切⊙O于点E
∴∠OAF=∠PBF=90°,CA=CE,DB=DE,PA=PB,
∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,
∴PA=PB=
3
2
r.
在Rt△PBF和Rt△OAF中,
∠FAO=∠FBP
∠OFA=∠PFB

∴Rt△PBF∽Rt△OAF.
AF
FB
=
AO
BP
=
r
3
2
r
=
2
3

∴AF=
2
3
FB,
在Rt△FBP中,
∵PF2-PB2=FB2
∴(PA+AF)2-PB2=FB2
∴(
3
2
r+
2
3
BF)2-(
3
2
2=BF2
解得BF=
18
5
r,
∴tan∠APB=
BF
PB
=
18
5
r
3
2
r
=
12
5
点评:本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是各项均不为0的等差数列,其前n项和为Sn,且an2=S2n-1,数列{bn}满足b1=-
1
2
,2bn+1=bn-1.
(Ⅰ)求an,并证明数列{bn+1}是等比数列;
(Ⅱ)若cn=an(bn+1),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(
12
+α)=-
1
4
,求cos(
π
12
-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)是实数2a与
-4a
x+2
的等差中项,函数f(x)=ln(1+x)-g(x)
(1)当a=0时,求曲线y=f(x)在原点处的切线方程;
(2)当a>0时,讨论函数f(x)在区间(0,+∞)上的单调性;
(3)证明不等式
1
3
+
1
5
+…+
1
2n+1
<ln
n+1
对任意n∈N*成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+1,x≤0
3-x2,0<x≤3

(1)求f(x)的定义域;
(2)求f(-2),f(0),f(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x3-x-3=0的实数解落在的区间是(  )
A、[-1,0]
B、[0,1]
C、[1,2]
D、[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ksinx+kcosx+sinxcosx+1
(1)若f(x)≥0在[0,
4
]上恒成立,求实数k的取值范围
(2)当k
2
时,求方程f(x)=0在[-2π,2π]上实数根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的外接圆的半径为1,且2B=A+C,求此三角形面积的取值范围.

查看答案和解析>>

同步练习册答案