精英家教网 > 高中数学 > 题目详情
12.设F1、F2是双曲线x2-$\frac{{y}^{2}}{4}$=1的左、右两个焦点,在双曲线右支上取一点P,使|OP|=|PF2|(O为坐标原点)且|PF1|=λ|PF2|,则实数λ的值为(  )
A.$\frac{7}{3}$B.2或$\frac{1}{2}$C.3D.2

分析 求出P的坐标,可得|PF1|=$\sqrt{(\frac{3\sqrt{5}}{2})^{2}+{1}^{2}}$=$\frac{7}{2}$,|PF2|=$\sqrt{(-\frac{\sqrt{5}}{2})^{2}+1}$=$\frac{3}{2}$,即可求出实数λ的值.

解答 解:由题意|OP|=|PF2|,可得P($\frac{\sqrt{5}}{2}$,1)
∵F1(-$\sqrt{5}$,0),F2($\sqrt{5}$,0),
∴|PF1|=$\sqrt{(\frac{3\sqrt{5}}{2})^{2}+{1}^{2}}$=$\frac{7}{2}$,|PF2|=$\sqrt{(-\frac{\sqrt{5}}{2})^{2}+1}$=$\frac{3}{2}$,
∵|PF1|=λ|PF2|,
∴实数λ=$\frac{7}{3}$.
故选:A.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,求出P的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若一扇形的面积为80π,半径为20,则该扇形的圆心角为72°(或$\frac{2π}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=|3x-1|,c<b<a,且f(c)>f(a)>f(b),则下列关系中一定成立的是(  )
A.3c+3a=2B.3c+3a>2
C.3c+3a<2D.3c+3a与2的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{x+\frac{1}{4x},x>o}\\{x+1,x≤0}\end{array}\right.$,h(x)=g[f(x)].
(1)求函数h(x)的单调递增区间.
(2)若关于x的方程h(x)-a=0有4个不同的实数很,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=4x-3•2x+3的值域为[7,43],求x范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.试求下列各正弦波的周期、频率和初相角.
(1)3sin314t;
(2)6cos(100πt-45°).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设z=$\sqrt{2}$i(1+i)3(a-i)2且z在复平面内对应的点与原点的距离为12,则实数a=$±\sqrt{3\sqrt{2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在三棱锥ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点.
(1)证明:A1B1⊥平面PMN;
(2)求三棱锥P-A1MN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(α)=$\frac{sin(π-α)cos(\frac{5π}{2}-α)tan(-α+π)}{tan(-\frac{π}{2}-α)sin(-π-α)}$.
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{7π}{2}$)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

同步练习册答案