精英家教网 > 高中数学 > 题目详情

【题目】过点A(4,1)的圆C与直线x﹣y﹣1=0相切于点B(2,1),则圆C的方程为

【答案】(x﹣3)2+y2=2
【解析】解:∵直线x﹣y﹣1=0的斜率为1, ∴过点B直径所在直线方程斜率为﹣1,
∵B(2,1),
∴此直线方程为y﹣1=﹣(x﹣2),即x+y﹣3=0,
设圆心C坐标为(a,3﹣a),
∵|AC|=|BC|,即 =
解得:a=3,
∴圆心C坐标为(3,0),半径为
则圆C方程为(x﹣3)2+y2=2.
故答案为:(x﹣3)2+y2=2.
求出直线x﹣y﹣1=0的斜率,利用两直线垂直时斜率的乘积为﹣1求出过点B的直径所在直线方程的斜率,求出此直线方程,根据直线方程设出圆心C坐标,根据|AC|=|BC|,利用两点间的距离公式列出方程,求出方程的解确定出C坐标,进而确定出半径,写出圆的方程即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线 恒过定点,圆经过点和点,且圆心在直线上.

(1)求定点的坐标;

(2)求圆的方程;

(3)已知点为圆直径的一个端点,若另一个端点为点,问:在轴上是否存在一点,使得为直角三角形,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A、B、C的对边分别为a、b、c.己知asinA+csinC﹣ asinC=bsinB, (Ⅰ)求B;
(Ⅱ)若A=75°,b=2,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4;坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线

(Ⅰ)求直线的普通方程和曲线的直角坐标方程.

(Ⅱ)求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

1)求y关于t的线性回归方程;

2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为:为参数).

(1)求曲线的直角坐标方程与曲线的普通方程;

(2)将曲线经过伸缩变换得到曲线,若分别是曲线和曲线上的动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1,讨论函数的单调性;

2曲线与直线交于两点,其中,若直线斜率为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=7,a5+a7=26.{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=﹣ (n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知M(﹣2,﹣3),N(3,0),直线l过点(﹣1,2)且与线段MN相交,则直线l的斜率k的取值范围是(  )
A.或k≥5
B.
C.
D.

查看答案和解析>>

同步练习册答案