【题目】已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是 (t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.
【答案】
(1)解:曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.
直线L的参数方程是 (t为参数),消去参数t可得
(2)解:把 (t为参数),代入方程:x2+y2=2x化为: +m2﹣2m=0,
由△>0,解得﹣1<m<3.
∴t1t2=m2﹣2m.
∵|PA||PB|=1=|t1t2|,
∴m2﹣2m=±1,
解得 ,1.又满足△>0.
∴实数m=1 ,1.
【解析】(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,利用 可得直角坐标方程.直线L的参数方程是 (t为参数),把t=2y代入 +m消去参数t即可得出.(2)把 (t为参数),代入方程:x2+y2=2x化为: +m2﹣2m=0,由△>0,得﹣1<m<3.利用|PA||PB|=t1t2 , 即可得出.
科目:高中数学 来源: 题型:
【题目】某学校为了解该校教师对教工食堂的满意度情况,随机访问了名教师.根据这名教师对该食堂的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为: , ,…, , .
(1)求频率分布直方图中的值;
(2)从评分在的受访教师中,随机抽取2人,求此2人的评分都在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的通项公式an=5﹣n,其前n项和为Sn , 将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn , 若存在m∈N* , 使对任意n∈N* , 总有Sn<Tn+λ恒成立,则实数λ的取值范围是( )
A.λ≥2
B.λ>3
C.λ≥3
D.λ>2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=e﹣x(lnx﹣2k)(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与y轴垂直.
(1)求f(x)的单调区间;
(2)设 ,对任意x>0,证明:(x+1)g(x)<ex+ex﹣2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据市场分析,某蔬菜加工点,当月产量为10吨至25吨时,月生产总成本(万元)可以看出月产量(吨)的二次函数,当月产量为10吨时,月生产成本为20万元,当月产量为15吨时,月生产总成本最低至17.5万元.
(I)写出月生产总成本(万元)关于月产量吨的函数关系;
(II)已知该产品销售价为每吨1.6万元,那么月产量为多少吨时,可获得最大利润,并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠,则m+n的取值范围为( )
A.(0,4)
B.[0,4)
C.[0,4]
D.(4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数与常数,若恒成立,则称为函数的一个“P数对”,设函数的定义域为,且。
(1)若是的一个“P数对”,且,求常数的值;
(2)若(1,1)是的一个“P数对”,且在上单调递增,求函数在上的最大值与最小值;
(3)若(-2,0)是的一个“P数对”,且当时,,求k的值及在区间上的最大值与最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com