分析 先设出直线的点斜式方程,求出直线在坐标轴上的截距,表示出三角形的面积,即可求出其斜率,进而求出直线的方程.
解答 解:设直线方程为y-4=k(x-1),令x=0得y=-k+4,令y=0得x=1-$\frac{4}{k}$
由题设条件$\frac{1}{2}$|1-$\frac{4}{k}$|•|-k+4|=1,
∴(k-4)2=2|k|,
∴$\left\{\begin{array}{l}{k>0}\\{{k}^{2}-10k+16=0}\end{array}\right.$或 $\left\{\begin{array}{l}{k<0}\\{{k}^{2}-6k+16=0}\end{array}\right.$,
∴k=2或8,
∴所求直线方程为:2x-y+2=0或8x-y-4=0.
点评 熟练掌握直线的点斜式方程、三角形的面积计算公式、分类讨论的思想方法是解题的关键.
科目:高中数学 来源: 题型:选择题
A. | sinα=sinβ | B. | cosα=cosβ | C. | tanα=tanβ | D. | sinα=cosβ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com