精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x-xlnx,g(x)=f(x)-xf′(a),其中f′(a)表示函数f(x)在x=a处的导数,a为正常数.
(1)求g(x)的单调区间;
(2)对任意的正实数x1,x2,且x1<x2,证明:(x2-x1)f′(x2)<f(x2)-f(x1)<(x2-x1)f′(x1);
(3)对任意的n∈N*,且n≥2,证明:数学公式

(1)解:f'(x)=-lnx,g(x)=x-xlnx+xlna,g'(x)=f'(x)-f'(a)=-lnx+lna=ln. …(2分)
所以,x∈(0,a)时,g'(x)>0,g(x)单调递增;x∈(a,+∞)时,g'(x)<0,g(x)单调递减.
所以,g(x)的单调递增区间为(0,a],单调递减区间为[a,+∞). …(4分)
(2)证明:对任意的正实数x1,x2,且x1<x2,取a=x1,则x2∈(x1,+∞),由(1)得g(x1)>g(x2),
即g(x1)=f(x1)-x1f'(x1)>f(x2)-x2f'(x1)=g(x2),
所以,f(x2)-f(x1)<(x2-x1)f'(x1)…①; …(6分)
取a=x2,则x1∈(0,x2),由(1)得g(x1)<g(x2),即g(x1)=f(x1)-x1f'(x2)<f(x2)-x2f'(x2)=g(x2),
所以,f(x2)-f(x1)>(x2-x1)f'(x2)…②.
综合①②,得(x2-x1)f'(x2)<f(x2)-f(x1)<(x2-x1)f'(x1). …(8分)
(3)证明:对k=1,2,…,n-2,令φ(x)=,则φ′(x)=
显然1<x<x+k,0<lnx<ln(x+k),所以xlnx<(x+k)ln(x+k),所以φ′(x)<0,φ(x)在(1,+∞)上单调递减.
由n-k≥2,得φ(n-k)≤φ(2),即
所以ln2lnn≤ln(2+k)ln(n-k),k=1,2,…,n-2. …(10分)
所以=
=2 …(12分)
又由(2)知f(n+1)-f(n)<f′(n)=-lnn,所以lnn<f(n)-f(n+1).
∴ln1+ln2+…+lnn<f(1)-f(2)+f(2)-f(3)+…+f(n)-f(n+1)=f(1)-f(n+1)=1-f(n+1).
所以,.…(14分)
分析:(1)求导函数,利用导数的正负,可确定函数的单调区间;
(2)先证明f(x2)-f(x1)<(x2-x1)f'(x1),f(x2)-f(x1)>(x2-x1)f'(x2),即可得(x2-x1)f'(x2)<f(x2)-f(x1)<(x2-x1)f'(x1);
(3)构造函数φ(x)=,确定φ(x)在(1,+∞)上单调递减,从而可得,即ln2lnn≤ln(2+k)ln(n-k),再利用放缩法,即可证得结论.
点评:本题考查导数知识的运用,考查函数的单调性,考查不等式的证明,考查放缩法的运用,综合性强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案