精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的长轴长为,离心率为.

(1)求椭圆的方程;

(2)过动点的直线交轴于点,交椭圆于点(在第一象限),且是线段的中点.过点轴的垂线交椭圆于另一点,延长交椭圆于点.

设直线的斜率分别为,证明为定值;

求直线斜率取最小值时,直线的方程.

【答案】(1)(2)①详见解析②

【解析】

(1) 利用长轴长为,离心率为分别求出的值,再求出的值,即可求出椭圆方程;(2) 设出的坐标,表示出直线的斜率,作比即可;设出的坐标,分别求出的方程,联立方程组,求出直线的斜率的解析式,根据不等式的性质计算出的最小值,再求出的值即可.

(1)由题意得:

所以

故椭圆方程为.

(2)①设,(),由,可得

所以直线的斜率,直线的斜率

此时,所以为定值.

②设,直线的方程为,直线的方程为.

联立,整理得

,可得

同理.

所以

所以

,可知,所以,当且仅当时取得等号.

在椭圆上得

此时,即

得,,所以时,符合题意.

所以直线的斜率最小时,直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,(i)求曲线在点处的切线方程;

(ii)求函数的单调区间;

(Ⅱ)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时, 恒成立,求的范围;

(2)若处的切线为,求的值.并证明当)时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,过且与轴垂直的直线与椭圆在第一象限内的交点为,且.

(1)求椭圆的方程;

(2)过点的直线交椭圆两点,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙两位同学上学期间,每天之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

1)设甲同学上学期间的三天中之前到校的天数为,求时的概率

2)设为事件“上学期间的三天中,甲同学在之前到校的天数比乙同学在之前到校的天数恰好多”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Ox2+y2=2,直线.ly=kx-2

1)若直线l与圆O相切,求k的值;

2)若直线l与圆O交于不同的两点AB,当∠AOB为锐角时,求k的取值范围;

3)若P是直线l上的动点,过P作圆O的两条切线PCPD,切点为CD,探究:直线CD是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)计算甲、乙两人射箭命中环数的平均数和标准差;

(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示,且相邻的两个最值点的距离为.

1)求函数的解析式;

2)若将函数的图象向左平移1个单位长度后得到函数的图象,关于的不等式上有解,求的取值范围.

查看答案和解析>>

同步练习册答案