精英家教网 > 高中数学 > 题目详情
已知过函数f(x)=x3+ax2+1的图象上一点B(1,b)的切线的斜率为-3.
(1)求a,b的值;
(2)求A的取值范围,使不等式f(x)≤A-1992对于x∈[-1,4]恒成立;
(3)令g(x)=-f(x)-3x2+tx+1.是否存在一个实数t,使得当x∈(0,1]时,g(x) 有最大值1?
分析:(1)先求导函数,利用过函数f(x)=x3+ax2+1的图象上一点B(1,b)的切线的斜率为-3,根据导数的几何意义,可得f′(1)=-3,从而可求a,b的值;
(2)令g(x)=f(x)+1992,则问题转化为求g(x)在[-1,4]上的最大值.
(3)先求导函数g′(x)=-3x2+t,根据t的取值不同,函数的单调性有所不同,故需进行分类讨论,从而得解.
解答:解:(1)f′(x)=3x2+2ax,
∵过函数f(x)=x3+ax2+1的图象上一点B(1,b)的切线的斜率为-3
∴f′(1)=-3,
∴a=-3,
将(1,b)代入函数f(x)=x3-3x2+1,可得b=-1
(2)令h(x)=f(x)+1992,则使不等式f(x)≤A-1992对于x∈[-1,4]恒成立
问题转化为h(x)≤A对于x∈[-1,4]恒成立,从而求h(x)在[-1,4]上的最大值即可.
求导数h′(x)=3x2-6x=3x(x-2),
则函数在(-1,0),(2,4)上,h′(x)>0,函数为单调增函数,
在(0,2)上,h′(x)<0,函数为单调减函数
∵h(-1)=1987,h(0)=1993,h(4)=2009
∴函数在x=4处取得最大值2009.
故A≥2009
(3)∵g(x)=-f(x)-3x2+tx+1=-x3+tx,∴g′(x)=-3x2+t
当t≤0时,函数单调递减,函数在x∈(0,1]无最大值;
当t∈(0,3)时,函数在x∈(0,1]上先增后减,gmax(x)=g(
t
3
)=1
,此时t=
3
2
32
符合题意
当t≥3时,函数在x∈(0,1]上单调递增,∴gmax(x)=g(1)=1,
∵g(x)=-f(x)-3x2+tx+1=-x3+tx,∴t-1=1,
∴t=2,不满足t≥3,舍去
t=
3
2
32
点评:本题以函数为载体,考查导数的几何意义,考查恒成立问题,解题的关键是利用导数确定函数的单调性,从而确定函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过函数f (x)=x2+bx上的点A(1,f(1))的切线为3x-y-1=0,数列{
1
f(n)
}的前n项和为Sn(n∈N),则
lim
n→
1
Sn•f(n)
=(  )
A、1
B、
1
3
C、0
D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过函数f (x)=x2+bx图象上的点A(1,f(1))的切线为3x-y-1=0,数列{
1
f(n)
}的前n项和为Sn(n∈N*),则
lim
n→∞
Sn
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过函数f(x)=x3+ax2+1的图象上一点B(1,b)的切线的斜率为-3.
(1)求a、b的值;
(2)求A的取值范围,使不等式f(x)≤A-1987对于x∈[-1,4]恒成立;
(3)令g(x)=-f(x)-3x2+tx+1.是否存在一个实数t,使得当x∈(0,1]时,g(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过函数f(x)=x2+bx图象上点A(1,f(1))的直线l与直线3x-y+2=0平行,且直线l与函数图象只有一个交点.又数列
1f(n)
(n∈N*)的前n项和为Sn,则S2012的值为
 

查看答案和解析>>

同步练习册答案