精英家教网 > 高中数学 > 题目详情
4.(x+3)(1-$\frac{2}{\sqrt{x}}$)5的展开式中常数项为43.

分析 (1-$\frac{2}{\sqrt{x}}$)5的展开式中通项公式Tk+1=${∁}_{5}^{k}$$(-\frac{2}{\sqrt{x}})^{k}$=(-2)k${∁}_{5}^{k}$${x}^{-\frac{k}{2}}$,令-$\frac{k}{2}$=0,或-1,解得k即可得出.

解答 解:(1-$\frac{2}{\sqrt{x}}$)5的展开式中通项公式Tk+1=${∁}_{5}^{k}$$(-\frac{2}{\sqrt{x}})^{k}$=(-2)k${∁}_{5}^{k}$${x}^{-\frac{k}{2}}$,
令-$\frac{k}{2}$=0,或-1,解得k=0,或2.
∴(x+3)(1-$\frac{2}{\sqrt{x}}$)5的展开式中常数项=3+$(-2)^{2}{∁}_{5}^{2}$=43.
故答案为:43.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数y=f(x)(x∈R)上任一点(x0,f(x0)),且在该点处的切线斜率为k=a(x0-1)(x0+2)2(a<0),则该函数的单调递减区间为(  )
A.[1,+∞)B.(-∞,1]C.(-2,1)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.计算sin46°•cos16°-cos314°•sin16°=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.工人工资y(元)与劳动生产率x(千元)的相关关系的回归直线方程为$\widehat{y}$=50+80x,下列判断正确的是(  )
A.劳动生产率为1 000元时,工人工资为130元
B.劳动生产率提高1 000元时,工人工资平均提高80元
C.劳动生产率提高1 000元时,工人工资平均提高130元
D.当月工资为250元时,劳动生产率为2 000元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从高一某班学号为1~50的50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是(  )
A.2,11,23,34,45B.5,16,27,38,49C.3,13,25,37,47D.4,13,22,31,40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-lnx,函数g(x)=$\frac{1}{3}$bx3-bx,a∈R且b≠0.
(1)讨论函数f(x)的单调性;
(2)若a=1,且对任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)+g(x2)=0成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A点测得的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°;已知山高BC=200m,则山高MN=300m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),过右焦点且斜率为1的直线交椭圆于A、B两点.
(1)证明:$\overrightarrow{OA}$+$\overrightarrow{OB}$与向量$\overrightarrow{m}$=(a2,-1)共线;
(2)设$\overrightarrow{OM}$=μ$\overrightarrow{OA}$+λ$\overrightarrow{OB}$,当μ22=1且M在椭圆上时,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列关于命题的说法错误的是(  )
A.在△ABC中,∠A=∠B是sin∠A=sin∠B的充要条件
B.命题“若|x|>|y|,则x>y”的否命题是“若|x|≤|y|,则x≤y”
C.复数(a+bi)(1+i)与复数-1+3i相等的充要条件是“a=1,b=2”
D.命题“?x∈(0,+∞),2x>1”的否定是“?x0∈(-∞,0],2${\;}^{{x}_{0}}$≤1”

查看答案和解析>>

同步练习册答案