精英家教网 > 高中数学 > 题目详情

【题目】已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点

1)求该椭圆的标准方程;

2)若是椭圆上的动点,求线段中点的轨迹方程;

【答案】12

【解析】试题分析:(1)由左焦点为,右顶点为D20),得到椭圆的半长轴a,半焦距c,再求得半短轴b,最后由椭圆的焦点在x轴上求得方程;(2)首先设所求点为Mx,y),借助于中点性质得到P点坐标用x,y表示,将P点代入椭圆方程从而得到中点的轨迹方程

试题解析:(1)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1

又椭圆的焦点在x轴上, ∴椭圆的标准方程为

2)设线段PA的中点为Mx,y,P的坐标是(x0,y0,

由点P在椭圆上,,

线段PA中点M的轨迹方程是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,左、右焦点分别为F1F2,且|F1F2|=2,点1 在椭圆C

1求椭圆C的方程;

2F1的直线l与椭圆C相交于AB两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为-
(1)求证:动点P恒在一个定椭圆C上运动;
(2)过 的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数 处的切线方程;

(2)设 ,讨论函数 的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,

(1)求证:

(2)试在线段上找一点,使平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有关于x的一元二次方程x2+2ax+b2=0.

(1)a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.

(2)a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC为等边三角形,AE=1,BD=2,CD与平面ABCDE所成角的正弦值为

(1)若F是线段CD的中点,证明:EF⊥平面DBC;
(2)求二面角D﹣EC﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,

(1)求实数m的值;

(2)判断函数的单调性并用定义法加以证明;

(3)若函数上的最小值为,求实数a的值.

查看答案和解析>>

同步练习册答案