精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x<0}\\{-{x}^{2}+x,x≥0}\end{array}\right.$,则f(f(2))=3.

分析 先求出f(2)=-22+2=-2,从而f(f(2))=f(-2),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x<0}\\{-{x}^{2}+x,x≥0}\end{array}\right.$,
∴f(2)=-22+2=-2,
f(f(2))=f(-2)=($\frac{1}{2}$)-2-1=3.
故答案为:3.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.化简:$\frac{5}{6}{a^{\frac{1}{2}}}{b^{-\frac{1}{3}}}×(-3{a^{-\frac{1}{6}}}{b^{-1}})÷{(4{a^{\frac{2}{3}}}{b^{-3}})^{\frac{1}{2}}}$=-$\frac{5}{4}$b${\;}^{\frac{1}{6}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给定0≤x0<1对一切整数n>0,令${x_n}=\left\{\begin{array}{l}2{x_{n-1}},2{x_{n-1}}<1\\ 2{x_{n-1}}-1,2{x_{n-1}}≥1\end{array}\right.$,则使x0=x6成立的x0的个数为64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xoy中,O为坐标原点,已知点Q(1,2),P是动点,且三角形POQ的三边所在直线的斜率满足$\frac{1}{{{k_{OP}}}}+\frac{1}{{{k_{OQ}}}}=\frac{1}{{{k_{PQ}}}}$.
(1)求点P的轨迹C的方程;
(2)过F作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB的面积;
(3)过点D(1,0)任作两条互相垂直的直线l1,l2,分别交轨迹C于点A,B和M,N,设线段AB,MN的中点分别为E,F.求证:直线EF恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数y=loga(x+1)(a>0,a≠1)的图象过定点,则x值为(  )
A.-1B.0C.1D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数y=f(x),x∈R,对于任意的x,y∈R,f(x+y)=f(x)+f(y),若f(1)=$\frac{1}{2}$,则f(-2016)=-1008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=f(x)是R上的偶函数,且当x≤0时,f(x)=log${\;}_{\frac{1}{2}}$(1-x)+x.
(1)求f(1)的值;
(2)求函数y=f(x)的表达式,并直接写出其单调区间(不需要证明);
(3)若f(lga)+2<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.建立适当的空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:PA∥平面EDB;
(2)求二面角F-DE-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线的点斜式方程是$y-2=-\sqrt{3}(x-1)$,那么此直线的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案