精英家教网 > 高中数学 > 题目详情

【题目】如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;
(1)求三棱锥A﹣BCD的体积;
(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).

【答案】
(1)解:如图,因为AB⊥平面BCD,

所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,

因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,

由AB=BC=2,得AD=4,AC=2

∴BD= =2 ,CD= =2

则VABCD= = =

=


(2)解:以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,

建立空间直角坐标系,

则A(0,2,2),D(2 ,0,0),C(0,0,0),B(0,2,0),M( ),

=(2 ,﹣2,﹣2), =( ),

设异面直线AD与CM所成角为θ,

则cosθ= = =

θ=arccos

∴异面直线AD与CM所成角的大小为arccos


【解析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.
【考点精析】认真审题,首先需要了解异面直线及其所成的角(异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,四个顶点构成的菱形的面积是4,圆M:(x+1)2+y2=r2(0<r<1).过椭圆C的上顶点A作圆M的两条切线分别与椭圆C相交于B,D两点(不同于点A),直线AB,AD的斜率分别为k1 , k2
(1)求椭圆C的方程;
(2)当r变化时,①求k1k2的值;②试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数使得,那么称的线性函数.

1)下面给出两组函数,判断是否分别为的线性函数?并说明理由;

第一组:

第二组:

2)设,线性函数为.若等式上有解,求实数的取值范围;

3)设,取.线性函数图像的最低点为.若对于任意正实数.试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①存在实数α使
②直线 是函数y=sinx图象的一条对称轴.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,则tanα>tanβ.
其中正确命题的题号为( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2
(1)求角A的大小;
(2)若a= ,b+c=3,求b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yfx)是偶函数,当x0时,;当x[3,﹣1]时,记fx)的最大值为m,最小值为n,则mn________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y+1=0垂直,求a的值;
(2)设f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:f(x1)+f(x2)>﹣5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国古代数学名著《九章算术》中将底面为直角三角形,且侧棱垂直于底面的三棱柱称之为堑堵,如图,在堑堵ABC﹣A1B1C1中,AB=BC,AA1>AB,堑堵的顶点C1到直线A1C的距离为m,C1到平面A1BC的距离为n,则 的取值范围是(
A.(1,
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥P﹣ABC的各顶点都在同一球的面上,且PA⊥平面ABC,若球O的体积为 (球的体积公式为 R3 , 其中R为球的半径),AB=2,AC=1,∠BAC=60°,则三棱锥P﹣ABC的体积为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案