精英家教网 > 高中数学 > 题目详情

【题目】已知是离心率为的椭圆 两焦点,若存在直线,使得关于的对称点的连线恰好是圆 的一条直径.

(1)求椭圆的方程;

(2)过椭圆的上顶点作斜率为的两条直线,两直线分别与椭圆交于两点,当时,直线是否过定点?若是求出该定点,若不是请说明理由.

【答案】(1);(2)定点

【解析】

1)由对称可知,椭圆焦距等于圆的直径,从而得到,再由离心率,求出,得出椭圆方程;(2)设直线,联立椭圆得到韦达定理,再由列出关系式,代入韦达定理,可解出,从而得到直线所过定点.

(1)将圆的方程配方得

所以其圆心为半径为1.

由题意知,椭圆焦距为等于圆直径,所以

,所以

椭圆的方程为

2)因为,所以直线斜率存在,

设直线,

理得

(*)

理得

所以

*)代入得

整理的,

所以直线定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左、右焦点分别为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.

(1)若点的坐标为,求椭圆的方程及的值;

(2)若,求椭圆的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;

(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于,设线段的长分别为,证明是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数

1)求b的值,并求出函数的定义域

2)若存在区间,使得时,的取值范围为,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班随机抽查了名学生的数学成绩,分数制成如图的茎叶图,其中组学生每天学习数学时间不足个小时,组学生每天学习数学时间达到一个小时,学校规定分及分以上记为优秀,分及分以上记为达标,分以下记为未达标.

1)根据茎叶图完成下面的列联表:

达标

未达标

总计

总计

2)判断是否有的把握认为“数学成绩达标与否”与“每天学习数学时间能否达到一小时”有关.

参考公式与临界值表:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过年时小明的舅舅在家庭微信群里发了一个10元的红包,红包被随机分配为2.51元,3.32元,1.24元,0.26元,2.67元,共五份.现已知小明与爸爸都各自抢到了一个红包,则两人抢到红包的金额总和不小于4元的概率为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点P(3,﹣4)作圆(x1)2+y22的切线,切点分别为AB,则直线AB的方程为(  

A.x+2y20B.x2y10C.x2y20D.x+2y+20

查看答案和解析>>

同步练习册答案