精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象在点处的切线与直线平行.

(Ⅰ)求函数的极值;

(Ⅱ)若对于,求实数的取值范围.

【答案】(Ⅰ)处取得极大值为,无极小值.(Ⅱ)

【解析】

(Ⅰ)求得fx)的导数,可得切线的斜率,由两直线平行的条件:斜率相等,可得a,求出fx)的导数和单调区间,即可得到所求极值;

(Ⅱ)设x1x2,可得fx1)﹣fx2)>mx12mx22,设gx)=fx)﹣mx2在(0+∞)为增函数,设gx)=fx)﹣mx2在(0+∞)为增函数,求得gx)的导数,再由参数分离和构造函数,求出最值,即可得到所求m的范围.

(Ⅰ)的导数为

可得的图象在点处的切线斜率为

由切线与直线平行,可得,即

,当,当时,

所以上递增,在上递减,

可得处取得极大值为,无极小值.

(Ⅱ)设,若,可得

上增函数,

上恒成立,

可得上恒成立,设,所以

上递减,在上递增,处取得极小值为

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】箱子里有16张扑克牌:红桃、4,黑桃、8、7、4、3、2,草花、6、5、4,方块、5,老师从这16张牌中挑出一张牌来,并把这张牌的点数告诉了学生甲,把这张牌的花色告诉了学生乙,这时,老师问学生甲和学生乙:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,老师听到了如下的对话:学生甲:我不知道这张牌;学生乙:我知道你不知道这张牌;学生甲:现在我知道这张牌了;学生乙:我也知道了.则这张牌是( )

A. 草花5B. 红桃

C. 红桃4D. 方块5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地因受天气,春季禁渔等因素影响,政府规定每年的7月1日以后的100天为当年的捕鱼期.某渔业捕捞队对吨位为的20艘捕鱼船一天的捕鱼量进行了统计,如下表所示:

捕鱼量(单位:吨)

频数

2

7

7

3

1

根据气象局统计近20年此地每年100天的捕鱼期内的晴好天气情况如下表(捕鱼期内的每个晴好天气渔船方可捕鱼,非晴好天气不捕鱼):

晴好天气(单位:天)

频数

2

7

6

3

2

(同组数据以这组数据的中间值作代表)

(Ⅰ)估计渔业捕捞队吨位为的渔船一天的捕鱼量的平均数;

(Ⅱ)若以(Ⅰ)中确定的平均数作为上述吨位的捕鱼船在晴好天气捕鱼时一天的捕鱼量.

①估计一艘上述吨位的捕鱼船一年在捕鱼期内的捕鱼总量;

②已知当地鱼价为2万元/吨,此种捕鱼船在捕鱼期内捕鱼时,每天成本为10万元/艘;若不捕鱼,每天成本为2万元/艘,请依据往年天气统计数据,估计一艘此种捕鱼船年利润不少于1600万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为为椭圆的左、右焦点,过右焦点的直线与椭圆交于两点,且的周长为.

(Ⅰ)求椭圆的方程;

(Ⅱ)若点A是第一象限内椭圆上一点,且在轴上的正投影为右焦点,过点作直线分别交椭圆于两点,当直线的倾斜角互补时,试问:直线的斜率是否为定值;若是,请求出其定值;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,点,对角线交于点P.

1)求直线的方程;

2)若点EF分别在平行四边形的边上运动,且,求的取值范围;

3)试写出三角形区域(包括边界)所满足的线性约束条件,若在该区域上任取一点M,使,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).

表中.

1)根据散点图判断,哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)

2)根据判断结果和表中数据,建立关于的回归方程;

3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1),求的取值范围;

(2),且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形中, ,点中点,沿折起至,如下图所示,点在面的射影落在上.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为其左右焦点,为其上下顶点,四边形的面积为.点为椭圆上任意一点,以为圆心的圆(记为圆)总经过坐标原点.

(1)求椭圆的长轴的最小值,并确定此时椭圆的方程;

(2)对于(1)中确定的椭圆,若给定圆,则圆和圆的公共弦的长是否为定值?如果是,求的值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案