精英家教网 > 高中数学 > 题目详情
平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)

(1)求|3
a
+
b
-2
c
|
的值;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求实数k的值.
(1)由题意
a
=(3,2),
b
=(-1,2),
c
=(4,1)

3
a
+
b
-2
c
=(0,6)?
|3
a
+
b
-2
c
|
=6
(2)由题意得,
a
+k
c
=(4k+3,k+2),2
b
-
a
=(-5,2)

(
a
+k
c
)⊥(2
b
-
a
)
?-5(4k+3)+2(k+2)=0?k=-
11
18
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2)
b
=(-1,2)
c
=(4,1)
,回答下列三个问题:
(1)试写出将
a
b
c
表示的表达式;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求实数k的值;
(3)若向量
d
满足(
d
+
b
)∥(
a
-
c
)
,且|
d
-
a
|=
26
,求
d

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(0,2),
b
=(-1,2),
c
=(3,3)
(
a
+k
c
)
(2
a
-
b
)
,则实数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)
(1)求|3
a
-
c
|
(2)若(
a
+k
c
)∥(2
b
-
a
)
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(0,2),
b
=(-1,2),
c
=(3,3)

(1)求|2
a
+
b
-
c
|;
(2)若(
a
+k
c
)∥(2
a
-
b
)
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)

(1)求|3
a
+
b
-2
c
|
的值;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求实数k的值.

查看答案和解析>>

同步练习册答案