【题目】已知椭圆的左、右焦点分别为,,以为圆心过椭圆左顶点的圆与直线相切于,且满足.
(1)求椭圆的标准方程;
(2)过椭圆右焦点的直线与椭圆交于不同的两点,,问内切圆面积是否有最大值?若有,求出最大值;若没有,说明理由.
【答案】(1);(2)有,最大值
【解析】
(1)由已知可得到直线的距离等于,结合,建立方程组,求解即可得出椭圆的标准方程;
(2)即求内切圆的半径是否有最大值,因为周长为,转化为的面积是否有最大值,设,则,再设出直线的方程为,与椭圆方程联立,得出关系,表示为的函数,根据其特征求出范围,即可得出结论.
(1)由已知椭圆方程为,
设椭圆右焦点,由到直线的距离等于,
得,,
又,,
又,求得,.
椭圆方程为,
(2)设,,设的内切圆半径为,
的周长为,
所以,
根据题意,直线的斜率不为零,可设直线的方程为,
由,得,
,,
,,
所以,
令,则,所以,
令,则当时,,
单调递增,所以,,
即当,,直线的方程为时,
的最大值为3,此时内切圆半径最大,
内切圆面积有最大值.
科目:高中数学 来源: 题型:
【题目】已知无穷数列的前项中的最大项为,最小项为,设.
(1)若,求数列的通项公式;
(2)若,求数列的前项和;
(3)若数列是等差数列,求证:数列是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线:与曲线:交于,两点,且的周长为.
(Ⅰ)求曲线的方程.
(Ⅱ)设过曲线焦点的直线与曲线交于,两点,记直线,的斜率分别为,.求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线,不与轴垂直的直线与双曲线右支交于点,,(在轴上方,在轴下方),与双曲线渐近线交于点,(在轴上方),为坐标原点,下列选项中正确的为( )
A.恒成立
B.若,则
C.面积的最小值为1
D.对每一个确定的,若,则的面积为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知为抛物线上一点,斜率分别为,的直线PA,PB分别交抛物线于点A,B(不与点P重合).
(1)证明:直线AB的斜率为定值;
(2)若△ABP的内切圆半径为.
(i)求△ABP的周长(用k表示);
(ii)求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国唐代天文学家、数学家张逐曾以“李白喝酒”为题编写了如下一道题:“李白街上走,提壶去买酒,遇店加一倍,见花喝一斗(计量单位),三遇店和花,喝光壶中酒.”问最后一次遇花时有酒________斗,原有酒________斗.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com