分析 由三视图可知:平面ABCD⊥平面ABFE,AD⊥平面ABFE,四边形ABCD是边长为4的正方形,底面ABFE是边长为2的正方形,M,N分别为AF,BC的中点.
(1)取BF的中点P,连接MP,NP.又M,N分别为AF,BC的中点.利用三角形中位线定理、面面平行的判定定理可得:平面MNP∥平面CDEF,即可证明MN∥平面CDEF.
(2)利用等体积法,求点B到平面MNF的距离.
解答 (1)证明:由三视图可知:平面ABCD⊥平面ABFE,AD⊥平面ABFE.
四边形ABCD是边长为2的正方形,底面ABFE是边长为4的正方形,M,N分别为AF,BC的中点.
取BF的中点P,连接MP,NP.
又M,N分别为AF,BC的中点.
∴NP∥CF,MP∥AB,
又AB∥EF,
可得MP∥EF.
又MP∩NP=P,MP?平面CDEF,NP?平面CDEF.
∴平面MNP∥平面CDEF;
∴MN∥平面CDEF.
(2)解:△MNF中,NM⊥MF,MF=2$\sqrt{2}$,MN=$\sqrt{16+4-8}$=2$\sqrt{3}$,S△MNF=$\frac{1}{2}×2\sqrt{2}×2\sqrt{3}$=2$\sqrt{6}$,
设点B到平面MNF的距离为h,则$\frac{1}{3}×2\sqrt{6}h$=$\frac{1}{3}×\frac{1}{2}×2\sqrt{2}×2\sqrt{2}×2$,∴h=$\frac{4\sqrt{6}}{3}$.
点评 本题考查线面平行的判定,考查点到平面距离的计算,考查等体积方法的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com