精英家教网 > 高中数学 > 题目详情
请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.
如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为中点,连接AG分别交⊙O、BD于点E、F,连接CE.
(1)求证:AG•EF=CE•GD;
(2)求证:

【答案】分析:(1)连接AB,由圆周角定理,及G为中点,可得∠GAD=∠FCE,∠CEF=∠ABC=90°,进而得到△CEF∽△AGD,根据相似三角形对应边成比例,可得AG•EF=CE•GD;
(2)由(1)可得∠DFG=∠CFE=∠ADG,故△AGD∽△DGF,根据相似三角形对应边成比例,可得,进而
解答:证明(1):已知AD为⊙M的直径,连接AB,
则∠BCE=∠BAE,∠CEF=∠ABC=90°,
由点G为弧BD的中点可知∠GAD=∠BAE=∠FCE,
故△CEF∽△AGD,所以有
即AG•EF=CE•GD.(5分)
(2)由(1)知∠DFG=∠CFE=∠ADG,
故△AGD∽△DGF,
所以
.(10分)
点评:本小题主要考查平面几何中三角形相似的判定与性质,以及圆中角的性质等知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2-(1+a)x+alnx
,其中a>0.
(Ⅰ) 求函数f(x)的极小值点;
(Ⅱ)若曲线y=f(x)在点A(m,f(m)),B(n,f(n))处的切线都与y轴垂直,问是否存在常数a,使函数y=f(x)在区间[m,n]上存在零点?如果存在,求a的值:如果不存在,请说明理由.
请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡把所选题目的题号涂黑.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长春一模)请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.
如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为
BD
中点,连接AG分别交⊙O、BD于点E、F,连接CE.
(1)求证:AG•EF=CE•GD;
(2)求证:
GF
AG
=
EF2
CE2

查看答案和解析>>

科目:高中数学 来源:2011届黑龙江省哈尔滨九中高三第二次模拟测试数学理卷 题型:解答题


选做题.(本小题满分10分.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.)
.在中,已知的角平分线,的外接圆交于点.求证:.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年辽宁省、庄河高中高三上学期期末文科数学 题型:解答题

选考题(本小题满分10分)(请考生在22,23,24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B铅笔在答题卡把所选题目的题号涂黑)

22、(本小题满分10分)选修4-1几何证明选讲

如图,D,E分别是AB,AC边上的点,且不与顶点重合,已知为方程的两根,

(1)   证明 C,B,D,E四点共圆;

(2)   若,求C,B,D,E四点所在圆的半径。

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省鸡西市高三第五次月考数学理卷 题型:解答题

选做题.(本题满分10分.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.)

修4—1:平面几何

如图,Δ是内接于⊙O直线切⊙O于点相交于点.

(1)求证:Δ≌Δ

(2)若,求

 

查看答案和解析>>

同步练习册答案