【题目】如图所示,在等腰梯形中,,,,点为的中点.将沿折起,使点到达的位置,得到如图所示的四棱锥,点为棱的中点.
(1)求证:平面;
(2)若平面平面,求三棱锥的体积.
【答案】(1)见解析;(2)
【解析】
(1)连接,交于点,连接,易知底面是平行四边形,则为中点,又是中点,可知,则结论可证.
(2)先证明是等腰直角三角形,由条件中的面面垂直可得平面,则由(1)可知平面,则为三棱锥的高,底面的面积容易求得,根据公式求三棱锥的体积.
(1)在平面图中,
因为且,
所以四边形是平行四边形;
在立体图中,
连接,交于点,连接,所以点是的中点,又因为点为棱的中点,
所以,因为平面,平面,
所以平面;
(2)在平面图中,
因为是平行四边形,所以,因为四边形是等腰梯形,
所以,所以,因为,所以;
在立体图中,,
又平面平面,且平面平面,平面
所以平面,
由(1)知,所以平面,
在等腰直角三角形中,因为,所以,
所以,又,
所以.
科目:高中数学 来源: 题型:
【题目】在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3. 将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且 .
(Ⅰ)证明:直线PQ∥平面ADE;
(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子停下所需的距离),无酒状态与酒后状态下的实验数据分别列于表1和表2.
表1:
停车距离(米) | |||||
频数 | 26 | 40 | 24 | 8 | 2 |
表2:
平均每毫升血液酒精含量(毫克) | 10 | 30 | 50 | 70 | 90 |
平均停车距离(米) | 30 | 50 | 60 | 70 | 90 |
请根据表1,表2回答以下问题.
(1)根据表1估计驾驶员无酒状态下停车距离的平均数;
(2)根据最小二乘法,由表2的数据计算关于的回归方程.
(3)该测试团队认为:驾驶员酒后驾车的“平均停车距离”大于(1)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(2)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?参考公式:
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高一某班级在学校数学嘉年华活动中推出了一款数学游戏,受到大家的一致追捧.游戏规则如下:游戏参与者连续抛掷一颗质地均匀的骰子,记第i次得到的点数为,若存在正整数n,使得,则称为游戏参与者的幸运数字。
(I)求游戏参与者的幸运数字为1的概率;
(Ⅱ)求游戏参与者的幸运数字为2的概率,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是( )
A. 有两个面平行,其余各面都是四边形的几何体叫棱柱
B. 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱
C. 用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台
D. 有两个面平行,其余各面都是平行四边形的几何体叫棱柱
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面上,将两个半圆弧和、两条直线和围成的封闭图形记为,如图中阴影部分.记绕轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理(祖暅原理:“幂势既同,则积不容异”,意思是:两等高的几何体在同高处被截得的两个截面面积均相等,那么这两个几何体的体积相等)、一个平放的圆柱和一个长方体,得出的体积值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)当a=1时,求函数f(x)在x=e﹣1处的切线方程;
(2)当 时,讨论函数f(x)的单调性;
(3)若x>0,求函数 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=sinωx(>0)的图象向右平移 个单位得到函数y=g(x)的图象,并且函数g(x)在区间[ , ]上单调递增,在区间[ ]上单调递减,则实数ω的值为( )
A.
B.
C.2
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com