精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在等腰梯形中,,点的中点.将沿折起,使点到达的位置,得到如图所示的四棱锥,点为棱的中点.

(1)求证:平面

(2)若平面平面,求三棱锥的体积.

【答案】(1)见解析;(2)

【解析】

1)连接,交于点,连接,易知底面是平行四边形,则中点,又中点,可知,则结论可证.

(2)先证明是等腰直角三角形,由条件中的面面垂直可得平面,则由(1)可知平面,则为三棱锥的高,底面的面积容易求得,根据公式求三棱锥的体积.

(1)在平面图中,

因为

所以四边形是平行四边形;

在立体图中,

连接,交于点,连接,所以点的中点,又因为点为棱的中点,

所以,因为平面平面

所以平面

(2)在平面图中,

因为是平行四边形,所以,因为四边形是等腰梯形,

所以,所以,因为,所以

在立体图中,

又平面平面,且平面平面平面

所以平面

由(1)知,所以平面

在等腰直角三角形中,因为,所以

所以,又

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3. 将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且
(Ⅰ)证明:直线PQ∥平面ADE;
(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子停下所需的距离),无酒状态与酒后状态下的实验数据分别列于表1和表2.

表1:

停车距离(米)

频数

26

40

24

8

2

表2:

平均每毫升血液酒精含量(毫克)

10

30

50

70

90

平均停车距离(米)

30

50

60

70

90

请根据表1,表2回答以下问题.

(1)根据表1估计驾驶员无酒状态下停车距离的平均数;

(2)根据最小二乘法,由表2的数据计算关于的回归方程.

(3)该测试团队认为:驾驶员酒后驾车的“平均停车距离”大于(1)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(2)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?参考公式:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高一某班级在学校数学嘉年华活动中推出了一款数学游戏,受到大家的一致追捧.游戏规则如下:游戏参与者连续抛掷一颗质地均匀的骰子,记第i次得到的点数为,若存在正整数n,使得,则称为游戏参与者的幸运数字。

(I)求游戏参与者的幸运数字为1的概率;

(Ⅱ)求游戏参与者的幸运数字为2的概率,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A. 有两个面平行,其余各面都是四边形的几何体叫棱柱

B. 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱

C. 用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台

D. 有两个面平行,其余各面都是平行四边形的几何体叫棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上,将两个半圆弧、两条直线围成的封闭图形记为,如图中阴影部分.记轴旋转一周而成的几何体为,过的水平截面,所得截面面积为,试利用祖暅原理(祖暅原理:“幂势既同,则积不容异”,意思是:两等高的几何体在同高处被截得的两个截面面积均相等,那么这两个几何体的体积相等)、一个平放的圆柱和一个长方体,得出的体积值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项,其前项和为,对于任意正整数,都有.

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列满足,且.

①求证数列为常数列.

②求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当a=1时,求函数f(x)在x=e﹣1处的切线方程;
(2)当 时,讨论函数f(x)的单调性;
(3)若x>0,求函数 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sinωx(>0)的图象向右平移 个单位得到函数y=g(x)的图象,并且函数g(x)在区间[ ]上单调递增,在区间[ ]上单调递减,则实数ω的值为(
A.
B.
C.2
D.

查看答案和解析>>

同步练习册答案