【题目】已知,函数.
(1)讨论的单调性;
(2)设,若的最大值为,求的取值范围.
【答案】(1)见解析(2)当时,;当时,.
【解析】
(1)根据函数解析式,先讨论当与两种情况.当时易判断单调递减,当时,讨论对称轴与区间的关系,即可判断单调性.
(2)根据(1)中所得在不同范围内的单调情况分类讨论. 当,在递减结合二次函数与绝对值函数的性质,并由的最大值即可求得的值,进而得的取值范围;当时,在递增,在递减,同理解绝对值不等式可求得的取值范围,进而得的取值范围.
(1)①当时,,在单调递减
②当时,即时,在单调递减
③当时,即时,在递增,在递减
④当时,不成立,所以无解.
综上所述,当时,在单调递减;
当时,在递增,在递减
(2)①当时,在递减,
,,
∵,
∴,
∴,
∴.
得.
②当时,在递增,在递减,
又,,
∵,
∴,同时,
∴
∴
∴
又∵,
∴,
又∵,
∴
且可得在递增,
所以.
综上所述, 当时,;当时,.
科目:高中数学 来源: 题型:
【题目】已知圆锥的顶点为,底面圆心为,母线长为,,、是底面半径,且:,为线段的中点,为线段的中点,如图所示:
(1)求圆锥的表面积;
(2)求异面直线和所成的角的大小,并求、两点在圆锥侧面上的最短距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,圆:.
(Ⅰ)设直线被圆所截得的弦的中点为,判断点与圆的位置关系;
(Ⅱ)设圆被圆截得的一段圆弧(在圆内部,含端点)为,若直线:与圆弧只有一个公共点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图象上所有点的纵坐标伸长到原来的倍(横坐标不变),再向左平移个单位长度,得到函数的图象,设函数.
(1)对函数的解析式;
(2)若对任意,不等式恒成立,求的最小值;
(3)若在内有两个不同的解,,求的值(用含的式子表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,过A作AE⊥CD,垂足为E,现将△ADE沿AE折叠,使得DE⊥EC.
(1)求证:BC⊥面CDE;
(2)在线段AE上是否存在一点R,使得面BDR⊥面DCB,若存在,求出点R的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平行四边形中,点是边的中点,将沿折起,使点到达点的位置,且
(1)求证; 平面平面;
(2)若平面和平面的交线为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的。在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样,直角坐标系内任意两点定义它们之间的一种“距离”:,请解决以下问题:
(1)求线段上一点到点的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆”上的所有点到点的“距离”均为的“圆”方程,并求该“圆”围成的图形的面积;
(3)若点到点的“距离”和点到点的“距离”相等,其中实数满足,求所有满足条件的点的轨迹的长之和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com