【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=2,b+c=4,求△ABC的面积.
【答案】
(1)解:由正弦定理及2asinB= b得:2sinAsinB= sinB,
∵sinB≠0,∴sinA= ,
又A是锐角,∴A=
(2)解:由a=2,b+c=4,cosA= 及余弦定理可得:cosA= ,即 = ,
整理得:b2+c2﹣4=bc,即(b+c)2﹣4=3bc,
化简得:bc=2,
解得:b=c=2,
则△ABC面积S= bcsinA=
【解析】(1)已知等式利用正弦定理化简,根据sinB不为0求出sinA的值,即可确定出A的度数;(2)利用余弦定理列出关系式,把a,cosA的值代入,并利用完全平方公式变形,把b+c=4代入求出bc=2,联立求出b与c的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC面积.
【考点精析】利用正弦定理的定义和余弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:;余弦定理:;;.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(kx+a)ex的极值点为﹣a﹣1,其中k,a∈R,且a≠0.
(1)若曲线y=f(x)在点A(0,a)处的切线l与直线y=|2a﹣2|x平行,求l的方程;
(2)若a∈[1,2],函数f(x)在(b﹣ea , 2)上为增函数,求证:e2﹣3≤b<ea+2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为9元,被随机分配为1.49元,1.31元,2.19元,3.40元,0.61元,共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥P﹣ABCD的底面为直角梯形,AB⊥AD,CD⊥AD,CD=2AB.点E是PC的中点.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)已知平面PCD⊥底面ABCD,且PC=DC.在棱PD上是否存在点F,使CF⊥PA?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=1nx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:当x>0时, ;
(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 , ,函数f(x)= .
(Ⅰ)求函数y=f(x)图象的对称轴方程;
(Ⅱ)若方程f(x)= 在(0,π)上的解为x1 , x2 , 求cos(x1﹣x2)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
(1)若α⊥γ,β⊥γ,则α//β;
(2)若mα,nα, , 则α//β;
(3)若α//β,lα,则l//β;
(4)若 , l//γ,则m//n.
其中正确的命题是( )
A.(1)(3)
B.(2)(3)
C.(2)(4)
D.(3)(4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com