精英家教网 > 高中数学 > 题目详情
如图6所示,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

图6
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
(1)x2=4y(2)见解析
解:(1)依题意,|OB|=8,∠BOy=30°.
设B(x,y),则x=|OB|sin30°=4,y=|OB|cos30°=12.
因为点B(4,12)在x2=2py上,所以(4)2=2p×12,解得p=2.
故抛物线E的方程为x2=4y.
(2)由(1)知y=x2,y′=x.
设P(x0,y0),则x0≠0,且l的方程为y-y0x0(x-x0),即y=x0x-.

所以Q.
假设以PQ为直径的圆恒过定点M,由图形的对称性知M必在y轴上,设M(0,y1),令·=0对满足y0 (x0≠0)的x0,y0恒成立.
由于=(x0,y0-y1),.
·=0,得-y0-y0y1+y1=0.
即(+y1-2)+(1-y1)y0=0.(*)
由于(*)式对满足y0 (x0≠0)的y0恒成立,所以
解得y1=1.
故以PQ为直径的圆恒过y轴上的定点M(0,1).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线.(1)求抛物线对应的二次函数的解析式;(2)求证:以ON为直径的圆与直线相切;(3)求线段MN的长(用表示),并证明M、N两点到直线的距离之和等于线段MN的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知是互不相等的实数,
求证:由确定的三条抛物线至少有一条与轴有两个不同的交点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标是                   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线y=x-1被抛物线y2=4x截得线段的中点坐标是______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.已知直线与抛物线相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则实数k的值为   (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直线:交抛物线两点,为坐标原点.

(Ⅰ)求的面积;
(Ⅱ)设抛物线在点处的切线交于点,求点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

轴为对称轴,以坐标原点为顶点,准线的抛物线的方程是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.已知为抛物线C上的一点,为抛物线C的焦点,其准线与轴交于点,直线与抛物线交于另一点,且,则点坐标为    

查看答案和解析>>

同步练习册答案