精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=lg(x+2),若0<c<b<a,则 $\frac{f(a)}{a}$、$\frac{f(b)}{b}$、$\frac{f(c)}{c}$的大小关系为(  )
A.$\frac{f(a)}{a}$>$\frac{f(b)}{b}$>$\frac{f(c)}{c}$B.$\frac{f(c)}{c}$>$\frac{f(b)}{b}$>$\frac{f(a)}{a}$C.$\frac{f(b)}{b}$>$\frac{f(a)}{a}$>$\frac{f(c)}{c}$D.$\frac{f(a)}{a}$>$\frac{f(c)}{c}$>$\frac{f(b)}{b}$

分析 利用对数函数的图象和性质,结合两点间的斜率,利用数形结合进行比较即可.

解答 解:设k=$\frac{f(x)}{x}$,则k的几何意义为图象f(x)上的点(x,y)与原点的斜率,
作出函数f(x)的图象,
当0<c<b<a时,
由图象知k0C>k0B>k0A
即$\frac{f(c)}{c}$>$\frac{f(b)}{b}$>$\frac{f(a)}{a}$,
故选:B.

点评 本题主要考查两点斜率的大小比较,利用数形结合,以及对数函数的图象和性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图在扇形AOB中,OA=OB=1,∠AOB=1弧度,圆C是扇形AOB的内切圆,圆C与OA切于T点.
(1)求圆C的半径r;
(2)求证:|$\overrightarrow{OT}$|=tan($\frac{π}{4}$-$\frac{1}{4}$);
(3)设P点为圆C上一动点,当($\overrightarrow{OP}$•$\overrightarrow{AP}$)•tan<$\overrightarrow{OP}$,$\overrightarrow{AP}$>最大时,试比较|$\overrightarrow{AP}$|与|$\overrightarrow{OT}$|的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=f(x)的定义域为[-1,5],则函数y=f(2x2-1)的定义域为(  )
A.[-1,5]B.[0,3]C.[-$\sqrt{3}$,$\sqrt{3}$]D.[1,49]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某公司2014年9月投资14 400万元购得某种纪念品的专利权及生产设备,生产周期为一年.已知生产每件纪念品还需要材料等其他费用20元.为保证有一定的利润,公司决定该纪念品的销售单价不低于150元,进一步的市场调研还发现:该纪念品销售单价定在150元到250元之间较为合理(含150元及250元).并且当销售单价定为150元时,预测年销售量为150万件;当销售单价超过150元但不超过200元时,预测每件纪念品的销售价格每增加1元,年销售量将减少1万件;当销售单价超过200元但不超过250元时,预测每件纪念品的销售价格每增加1元,年销售量将减少1.2万件.根据市场调研的结果,设该纪念品的销售单价为x(元),年销售量为u(万件),平均每件纪念品的利润为y(元).
(1)求年销售量u关于销售单价x的函数关系式;
(2)该公司考虑到消费者的利益,决定销售单价不超过200元,问销售单价x为多少时,平均每件纪念品的利润y最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=2lnx-kx+$\frac{1}{x}$(k为常数).
(1)当k=0时,求函数f(x)的最值;
(2)若k≠0,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{ax}{{{x^2}+1}}+b{x^2}$为奇函数,且f(1)=$\frac{1}{2}$.
(1)求a,b的值;
(2)判断函数f(x)在(-1,1)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在四棱锥P-ABCD中,底面ABCD是一直角梯形,PA⊥底面ABCD,∠BAD=90°,AD∥BC,AB=BC=1,AD=AP=2,E是PD的中点.
(1)求异面直线AE与CD所成角的大小;
(2)求直线BP与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,表示同一函数的是(  )
A.$y=\frac{{{x^2}-1}}{x-1}与y=x+1$B.$y=lgx与y=\frac{1}{2}lg{x^2}$
C.y=lg(x2-1)与y=lg(x+1)+lg(x-1)D.y=x与y=${log}_{a}{a}^{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和Sn=$\frac{3^{n+1}}{2}$-$\frac{3}{2}$(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an•log3an,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案