精英家教网 > 高中数学 > 题目详情
4.已知两个异面直线的方向向量分别为$\overrightarrow{a}$,$\overrightarrow{b}$,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{1}{2}$,则两直线的夹角为$\frac{π}{3}$.

分析 由条件利用两个向量的数量积的定义求得cos<$\overrightarrow{a}$,$\overrightarrow{b}$>,可得<$\overrightarrow{a}$,$\overrightarrow{b}$>的值,可得两直线的夹角.

解答 解:设两直线的夹角为θ,则由题意可得1×1×cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=-$\frac{1}{2}$,∴cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=-$\frac{1}{2}$,
∴<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{2π}{3}$,∴θ=$\frac{π}{3}$,
故答案为:$\frac{π}{3}$.

点评 本题主要考查两个向量的数量积的定义,注意两直线的夹角与<$\overrightarrow{a}$,$\overrightarrow{b}$>的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,过F1作圆:x2+y2=$\frac{3}{4}$c2的切线交双曲线左右支分别于A,B两点,且|$\overrightarrow{BA}$|=|$\overrightarrow{B{F}_{2}}$|,则双曲线的离心率等于$\frac{\sqrt{13}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设是n给定的大于2的整数,有n个外表上没有区别的袋子,第k个袋子有k个红球,n-k个白球,把这些袋子混合后,任选一个袋子,并且从中连续取出三个球(每次取出不放回),求第三次取出的是白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2+bx+c(b,c∈R).
(1)当b=c>0时,若函数f(x)的图象于x轴有两个不同的交点,其横坐标分别为x1,x2,求证:x1<-1且x2<-1;
(2)若对任意满足|x|≥2的实数x有f(x)≥0成立,且f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)的最大值为1,试求b,c满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(2x+1)=4x2+8x.
(1)求f(x)的解析式;
(2)若g(x)=sin(π-x)cos(x-$\frac{π}{2}$)+sin($\frac{π}{2}$+x)cos(2π-x)+sin($\frac{π}{3}$+x),求f[g(x)]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=cos2ωx-$\sqrt{3}$sin2ωx,f(x)的最小正周期是π.
(1)求f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调递增区间;
(2)若x∈[0,$\frac{π}{2}$]时,f(x)+m≤3,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=x3+b$\root{3}{x}$+1(x∈R),若f(a)=2,则f(-a)的值为(  )
A.-3B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线l:y=x+1平分圆C:(x-1)2+(y-b)2=4,则直线x=3同圆C的位置关系是(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.己知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=-2,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案