精英家教网 > 高中数学 > 题目详情
设f(x)是R上的奇函数,且当x∈(0,+∞)时,f(x)=x(1+
3x
)
,则f(0)=
 
;f(-8)=
 
考点:函数的值
专题:函数的性质及应用
分析:由奇函数的性质得f(0)=0;f(-8)=-f(8)=-8(1-
38
)=8.
解答: 解:∵f(x)是R上的奇函数,
且当x∈(0,+∞)时,f(x)=x(1+
3x
),
∴f(0)=0;
f(-8)=-f(8)=-8(1+
38
)=-24.
故答案为:0;-24.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

是否存在实数a,使得函数y=sin2x+acos x+
5
8
a-
3
2
在闭区间[-
π
2
π
3
]
上的最大值是1?若存在,求出对应的a值?若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在矩形ABCD中,AD=2AB,点E为AD的中点,则cos∠EBD=(  )
A、
3
2
B、
3
3
C、
10
5
D、
3
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,既是奇函数又在(0,+∞)上单调递减的函数是(  )
A、y=
1
x
B、y=e-x
C、y=-tanx
D、y=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=2an+1.
(Ⅰ)证明数列{an+1}是等比数列,并求{an}的通项公式;
(Ⅱ)证明:
1
a1
+
1
a2
+…+
1
an
<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=3-
1
3
,b=log2
1
3
,c=log
1
2
1
3
,则(  )
A、a>b>c
B、a>c>b
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(-∞,0)∪(0,+∞)上的函数f(x)满足f(-x)=f(x),当a,b∈(-∞,0)时总有
f(a)-f(b)
a-b
>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设l,m,n表示三条直线,α,β表示两个平面,给出下列四个命题:
①若l∥m,l⊥α,则m⊥α;
②若m⊆β,n是l在β内的射影,m⊥l,则m⊥n;
③若l⊥α,α⊥β,则l∥β;
④若l⊥α,α∥β,m?β,则l⊥m.
其中真命题为(  )
A、①②④B、①②③
C、①③D、①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数y=mx2-mx+4的值域为[0,+∞),则实数m的取值集合为
 

查看答案和解析>>

同步练习册答案