已知函数其中为参数,且
(I)当时,判断函数是否有极值;
(II)要使函数的极小值大于零,求参数的取值范围;
(III)若对(II)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。
科目:高中数学 来源:荆门市2008届高三第一轮复习三角函数单元测试卷 题型:044
已知函数其中x∈R,为参数,且
(1)当cos=0时,判断函数f(x)是否有极值;
(2)要使函数f(x)的极小值大于零,求参数的取值范围;
(3)若对(2)中所求的取值范围内的任意参数,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年天津卷文)(12分)
已知函数其中为参数,且
(I)当时,判断函数是否有极值;
(II)要使函数的极小值大于零,求参数的取值范围;
(III)若对(II)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年天津卷理)(12分)
已知函数其中为参数,且
(I)当时,判断函数是否有极值;
(II)要使函数的极小值大于零,求参数的取值范围;
(III)若对(II)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年四川省成都市模拟考试理科数学试卷(解析版) 题型:解答题
已知函数其中为自然对数的底数, .(Ⅰ)设,求函数的最值;(Ⅱ)若对于任意的,都有成立,求的取值范围.
【解析】第一问中,当时,,.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵,,
∴原不等式等价于:,
即, 亦即
分离参数的思想求解参数的范围
解:(Ⅰ)当时,,.
当在上变化时,,的变化情况如下表:
|
- |
+ |
|
||
1/e |
∴时,,.
(Ⅱ)∵,,
∴原不等式等价于:,
即, 亦即.
∴对于任意的,原不等式恒成立,等价于对恒成立,
∵对于任意的时, (当且仅当时取等号).
∴只需,即,解之得或.
因此,的取值范围是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com