精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B等于(  )
A.(0,2)B.(2,3)C.(-1,3)D.(-1,0)

分析 利用并集定义求解.

解答 解:∵集合A={x|-1<x<2},B={x|0<x<3},
∴A∪B={x|-1<x<3}=(-1,3).
故选:C.

点评 本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知P为抛物线y2=4x上任意一点,抛物线的焦点为F,点A(2,1)是平面内一点,则|PA|+|PF|的最小值为(  )
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y=4x2的焦点到准线的距离为(  )
A.2B.$\frac{1}{8}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}的首项a1=1,前n项和为Sn,且满足2an+1+Sn=2,则满足$\frac{1001}{1000}<\frac{{{S_{2n}}}}{S_n}<\frac{11}{10}$的n的最大值是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A是射线x+y=0(x≤0)上的动点,B是x轴正半轴的动点,若直线AB与圆x2+y2=1相切,则|AB|的最小值是$2+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,正方形BCDE的边长为a,已知$AB=\sqrt{3}BC$,将△ABE沿BE边折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:
①AB与DE所成角的正切值为$\sqrt{2}$;
②AB∥CE;
③${V_{B-ACE}}=\frac{1}{12}{a^3}$;
④平面ABC⊥平面ADC.其中正确的命题序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是(  )
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{11}{21}$D.$\frac{10}{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.l是经过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)焦点F且与实轴垂直的直线,A,B是双曲线C的两个顶点,点在l存在一点P,使∠APB=60°,则双曲线离心率的最大值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1(-1,0),P为椭圆上的顶点,且∠PF1O=45°(O为坐标原点).
(1)求a,b的值;
(2)已知直线l1:y=kx+m1与椭圆交于A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆交于C,D两点,且|AB|=|CD|.
①求m1+m2的值;
②求四边形ABCD的面积S的最大值.

查看答案和解析>>

同步练习册答案