【题目】关于圆周率,数学发展史上出现过多很有创意的求法,如著名的蒲丰试验,受其启发,我们也可以通过设计下面的试验来估计的值,试验步骤如下:①先请高二年级名同学每人在小卡片上随机写下一个实数对;②若卡片上的,能与构成锐角三角形,则将此卡片上交;③统计上交的卡片数,记为;④根据统计数,估计的值.那么可以估计的值约为( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】对于项数为()的有穷正整数数列,记(),即为中的最大值,称数列为数列的“创新数列”.比如的“创新数列”为.
(1)若数列的“创新数列”为1,2,3,4,4,写出所有可能的数列;
(2)设数列为数列的“创新数列”,满足(),求证: ();
(3)设数列为数列的“创新数列”,数列中的项互不相等且所有项的和等于所有项的积,求出所有的数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某海面上有、、三个小岛(面积大小忽略不计),岛在岛的北偏东方向距岛千米处,岛在岛的正东方向距岛20千米处.以为坐标原点,的正东方向为轴的正方向,1千米为单位长度,建立平面直角坐标系.圆经过、、三点.
(1)求圆的方程;
(2)若圆区域内有未知暗礁,现有一船D在岛的南偏西30°方向距岛40千米处,正沿着北偏东行驶,若不改变方向,试问该船有没有触礁的危险?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌服装店为了庆祝开业两周年,特举办“你敢买,我就送”的回馈活动,规定店庆当日进店购买指定服装的消费者可参加游戏,赢取奖金,游戏分为以下两种:
游戏 1:参加该游戏赢取奖金的成功率为,成功后可获得元奖金;
游戏 2:参加该游戏赢取奖金的成功率为,成功后可得元奖金;
无论参与哪种游戏,未成功均没有收获,每人有且仅有一次机会,且每次游戏成功与否均互不影响,游戏结束后可到收银台领取奖金。
(Ⅰ)已知甲参加游戏 1,乙参加游戏 2,记甲与乙获得的总奖金为,若,求的值;
(Ⅱ)若甲、乙、丙三人都选择游戏 1或都选择游戏 2,问:他们选择何种规则,累计得到奖金的数学期望值最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.
A. 互联网行业从业人员中90后占一半以上
B. 互联网行业中从事技术岗位的人数超过总人数的20%
C. 互联网行业中从事运营岗位的人数90后比80前多
D. 互联网行业中从事技术岗位的人数90后比80后多
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com