精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥的底面为等腰梯形, , ,垂足为是四棱锥的高。

)证明:平面 平面

)若,60°,求四棱锥的体积。

【答案】(1)PH是四棱锥P-ABCD的高,得到ACPH,ACBD,推出AC平面PBD.

故平面PAC平面PBD.

(2)

【解析】试题分析:(1)因为PH是四棱锥P-ABCD的高。

所以ACPH,ACBD,PH,BD都在平面PHD,PHBD=H.

所以AC平面PBD.

故平面PAC平面PBD.

(2)因为ABCD为等腰梯形,ABCD,ACBD,AB=.

所以HA=HB=.

因为APB=ADR=600

所以PA=PB=,HD=HC=1.

可得PH=.

等腰梯形ABCD的面积为S=AC x BD = 2+.

所以四棱锥的体积为V=x2+x=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)设函数,试讨论函数的单调性;

(Ⅱ)设函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,则下列结论正确的是( )

A. 上所有的点向右平移个单位长度,再把所有图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到曲线

B. 上所有点向左平移个单位长度,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变),得到曲线

C. 上各点的横坐标缩短到原来的倍(纵坐标不变),再把所得图象上所有的点向左平移个单位长度,得到曲线

D. 上各点的横坐标伸长到原来的3倍(纵坐标不变),再把所得图象上所有的点向左平移个单位长度,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, , .将沿折起至,使得平面平面(如图2), 为线段上一点.

图1 图2

(Ⅰ)求证:

(Ⅱ)若为线段中点,求多面体与多面体的体积之比;

(Ⅲ)是否存在一点,使得平面?若存在,求的长.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

1)求椭圆的方程;

2)过椭圆左焦点的直线与椭圆交于两点,直线过坐标原点且直线的斜率互为相反数,直线与椭圆交于两点且均不与点重合,设直线的斜率为,直线的斜率为.证明 为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】石嘴山市第三中学高三年级统计学生的最近20次数学周测成绩,现有甲、乙两位同学的20次成绩如茎叶图所示:

(1)根据茎叶图求甲、乙两位同学成绩的中位数,并将同学乙的成绩的频率分布直方图填充完整;

(2)现从甲、乙两位同学的不低于140分的成绩中任意选出2个成绩,记事件为“其中2个成绩分别属于不同的同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为,为坐标原点.

(Ⅰ)求的轨迹方程;

(Ⅱ)当不重合)时,求的方程及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是奇函数,是偶函数,且其中.

1)求的表达式,并求函数的值域

2)若关于的方程在区间内恰有两个不等实根,求常数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将直线2xyλ=0沿x轴向左平移1个单位,所得直线与圆x2y2+2x-4y=0相切,则实数λ的值为(  )

A.-3或7B.-2或8

C.0或10D.1或11

查看答案和解析>>

同步练习册答案