精英家教网 > 高中数学 > 题目详情

【题目】.

(1)求的单调区间;

(2)已知,若对所有,都有成立,求实数的取值范围.

【答案】(I) 上是增函数.(II)

【解析】试题分析:(1)对函数求导,后利用均值不等式易判断导数值恒大于,可得函数在定义域上单调递增;(2)由已知整理可得,可将原命题转化为成立,构造函数,利用导数与函数单调性的关系,对进行分讨论后可得的取值范围.试题解析:

(I)

∴在 上是增函数.

(II)

显然,故若使,只需 即可.

,则

(i)当时, 恒成立,

内为增函数

,即上恒成立.

(ii)当时,则令,即,可化为

解得

∴两根(舍),

从而.

时,则

,∴为减函数.

,∴

∴当时, 不恒成立,即不恒成立.

综上所述,a的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)设不等式对满足的一切实数的取值都成立,求的取值范围;

(Ⅱ)是否存在实数,使得不等式对满足的一切实数的取值都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘车补贴标准如下表:

某校研究性学习小组,从汽车市场上随机选取了辆纯电动乘用车,根据其续驶里程(单次充电后能行驶的最大里程)作出了频率与频数的统计表:

(1)求的值;

(2)若从这辆纯电动乘用车中任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;

(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为(单位:万元),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.
(1)求证:BD1∥平面A1DE;
(2)求证:A1D⊥平面ABD1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是正四棱柱的一个截面,此截面与棱交于点 ,其中分别为棱上一点.

(1)证明:平面平面

(2)为线段上一点,若四面体与四棱锥的体积相等,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点C(t,) (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y﹣4=0与圆C交于点M、N,若OM=ON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若有极值0,求实数,并确定该极值为极大值还是极小值;

(2)在(1)的条件下,当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:

①弩马第九日走了九十三里路;

②良马前五日共走了一千零九十五里路;

③良马和弩马相遇时,良马走了二十一日.

则以上说法错误的个数是( )个

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案