精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn , 已知2Sn=3n+1+2n﹣3.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

【答案】
(1)解:∵2Sn=3n+1+2n﹣3,

∴当n≥2时,2an=2Sn﹣2Sn1=(3n+1+2n﹣3)﹣[3n+2(n﹣1)﹣3]=23n+2,

∴an=3n+1,

又a1=S1= (32+2×1﹣3)=4,适合上式,

∴an=3n+1;


(2)解:由(1)知an=3n+1,则nan=n3n+n,

∵数列{nan}的前n项和Tn

则Tn=131+232+…+n3n+(1+2+3+…+n),

令An=131+232+…+n3n,①

则3An=132+233+…+(n﹣1)3n+n3n+1,②

①﹣②得:﹣2An=31+32+…+3n﹣n3n+1

= ﹣n3n+1=( )3n+1

∴An= 3n+1+

∴Tn= 3n+1+ +


【解析】(1)由Sn=3n+1+2n﹣3,可得当n≥2时,an=Sn﹣Sn1=3n+1,再检验当n=1时,a1是否适合上式,即可求得数列{an}的通项公式;(2)依题意,nan=n3n+n,Tn=131+232+…+n3n+(1+2+3+…+n),令An=131+232+…+n3n , 利用错位相减法可求得An= 3n+1+ ,而1+2+3+…+n= ,从而可得数列{nan}的前n项和Tn
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= (a>0,a≠1)的定义域和值域都是[0,1],则loga +loga =(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点.

(1)求圆A的方程;

(2)当|MN|=2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期内的图象时,列表并填入了部分数据,如下表:

ωx+φ

0

π

x

π

Asin(ωx+φ)

0

3

﹣3

0


(1)请将上表空格中处所缺的数据填写在答题卡的相应位置上,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点的横坐标缩短为原来的 ,再将所得图象向左平移 个单位,得到y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=2sin(3x+φ)的图象向右平移 个单位后得到的图象关于点( ,0)对称,则|φ|的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直线上到点距离最近的点的坐标是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,点P,G分别是的中点,已知⊥平面ABC,==3,==2.

(I)求异面直线AB所成角的余弦值;

(II)求证:⊥平面

(III)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中点.

现沿AD把平面PAD折起,使得PA⊥AB(如图乙所示),E、F分别为BC、AB边的中点.

(1)求证:平面PAE⊥平面PDE;

(2)在PE上找一点Q,使得平面BDQ⊥平面ABCD.

(3)在PA上找一点G,使得FG∥平面PDE.

查看答案和解析>>

同步练习册答案