精英家教网 > 高中数学 > 题目详情

【题目】在生活中,我们常看到各种各样的简易遮阳棚.现有直径为的圆面,在圆周上选定一个点固定在水平的地面上,然后将圆面撑起,使得圆面与南北方向的某一直线平行,做成简易遮阳棚.设正东方向射出的太阳光线与地面成角,若要使所遮阴影面的面积最大,那么圆面与阴影面所成角的大小为(

A.B.C.D.

【答案】C

【解析】

根据题意分析出阴影面是椭圆面,根据椭圆的面积公式,将面积最大转化为椭圆的长轴长最大,在三角形中利用正弦定理可求得结果.

依题意分析可知,阴影面是椭圆面,椭圆的短轴长

如图:圆的直径在地面的投影为,则为椭圆的长轴,为圆面与阴影面所成二面角的平面角,

根据椭圆的面积公式可得,所以要使椭圆的面积最大,只要最大即可,

在△ABC中,由正弦定理可得

所以,当时,取得最大值4,此时,

所以圆面与阴影面所成角的大小为.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知fx)=ex+sinx+axaR.

(Ⅰ)当a=﹣2时,求证:fx)在(﹣∞,0)上单调递减;

(Ⅱ)若对任意x0fx)≥1恒成立,求实数a的取值范围;

(Ⅲ)若fx)有最小值,请直接给出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若处的切线方程为,求实数的值:

2)求证:当时,上有两个极值点:

3)设,若单调递减,求实数的取值范围.(其中为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Cab0)的焦距为2,且过点.

1)求椭圆C的方程;

2)已知△BMN是椭圆C的内接三角形,若坐标原点O为△BMN的重心,求点O到直线MN距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率π是数学中一个非常重要的数,历史上许多中外数学家利用各种办法对π进行了估算.现利用下列实验我们也可对圆周率进行估算.假设某校共有学生N人,让每人随机写出一对小于1的正实数ab,再统计出ab1能构造锐角三角形的人数M,利用所学的有关知识,则可估计出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1F2是椭圆Cab0)的左、右焦点,过椭圆的上顶点的直线x+y=1被椭圆截得的弦的中点坐标为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过F1的直线l交椭圆于AB两点,当△ABF2面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】千百年来,人们一直在通过不同的方式传递信息.在古代,烽火狼烟、飞鸽传书、快马驿站等通信方式被人们广泛传知;第二次工业革命后,科技的进步带动了电讯事业的发展,电报电话的发明让通信领域发生了翻天覆地的变化;之后,计算机和互联网的出现则.使得千里眼”“顺风耳变为现实……此时此刻,5G的到来即将给人们的生活带来颠覆性的变革,“5G领先一方面是源于我国项层设计的宏观布局,另一方面则来自于政府高度重视、企业积极抢滩、企业层面的科技创新能力和先发优势.某科技创新公司基于领先技术的支持,丰富的移动互联网应用等明显优势,随着技术的不断完善,该公司的5G经济收入在短期内逐月攀升,业内预测,该创新公司在第1个月至第7个月的5G经济收入y(单位:百万元)关于月份x的数据如下表:

时间(月份)

1

2

3

4

5

6

7

收入(百万元)

6

11

21

34

66

101

196

根据以上数据绘制散点图:

1)为了更充分运用大数据、人工智能、5G等技术,公司需要派出员工实地考察检测产品性能和使用状况,公司领导要从报名的五名科技人员ABCDE中随机抽取3个人前往,则AB同时被抽到的概率为多少?

2)根据散点图判断,abcd均为大于零的常数)哪一个适宜作为5G经济收入y关于月份x的回归方程类型?(给出判断即可,不必说明理由)并根据你判断结果及表中的数据,求出y关于x的回归方程;

3)请你预测该公司8月份的5G经济收入.

参考数据:

462

10.78

2711

50.12

2.82

3.47

其中设

参考公式:

对于一组具有线性相关系的数据23n),其回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,D的中点.

1)证明:平面

2)若是边长为2的正三角形,且,平面平面.求平面与侧面所成二面角的正弦值.

查看答案和解析>>

同步练习册答案