精英家教网 > 高中数学 > 题目详情
19.已知圆x2+y2-2ax+2y+b-2a+4=0.
(1)若b=a2,试求实数a的取值范围;
(2)若b=2a2-6,试求面积最大的圆的方程.

分析 (1)若b=a2,将圆x2+y2-2ax+2y+b-2a+4=0化为标准方程,根据方程右边为半径的平方,大于0,可得实数a的取值范围;
(2)若b=2a2-6,将圆x2+y2-2ax+2y+b-2a+4=0化为标准方程,求出半径的平方最大时的a值,可得答案.

解答 解:(1)若b=a2
则圆x2+y2-2ax+2y+b-2a+4=0可化为:
x2+y2-2ax+2y+a2-2a+4=0,即(x-a)2+(y+1)2=2a+3,
由2a+3>0得:a>$-\frac{3}{2}$
(2)若b=2a2-6,
则圆x2+y2-2ax+2y+b-2a+4=0可化为:
x2+y2-2ax+2y+2a2-6-2a+4=0,
即(x-a)2+(y+1)2=-a2+2a+3,
当a=1时,-a2+2a+3取最大值4,
此时圆的面积最大,
故面积最大的圆的方程为(x-1)2+(y+1)2=4

点评 本题考查的知识点是圆的一般方程和圆的标准方程,函数的最值,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.数列{an}的前项n和${S_n}=3{n^2}-5n$,则a20的值为112.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求证菱形的两条对角线互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=6,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{4}$,求$\overrightarrow{a}$•$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过点A(-1,6)向圆(x-3)2+(y+2)2=25作切线,则切线长为$\sqrt{55}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=f(x)是偶函数,且f(1)>f(-2),则f(1)>f(2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若2bccosBcosC=b2sin2C+c2sin2B,那么△ABC是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知2($\overrightarrow{a}$+$\overrightarrow{x}$)=3($\overrightarrow{b}$-$\overrightarrow{x}$),则$\overrightarrow{x}$=$\frac{3}{5}$$\overrightarrow{b}$-$\frac{2}{5}$$\overrightarrow{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数y=f(x)满足?x∈R,有f(1+x)=f(1-x)=f(x-1),则下列说法错误的是(  )
A.f(x)的图象关于直线x=1对称B.f(x)为奇函数
C.f(x)是周期为2的函数D.f(x)为偶函数

查看答案和解析>>

同步练习册答案