精英家教网 > 高中数学 > 题目详情
8.已知x,y均为正实数,则$\frac{x}{2x+3y}$+$\frac{3y}{x+6y}$的最大值为(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{6}}{3}$C.$\frac{8}{9}$D.$\frac{2}{3}$

分析 换元,再利用基本不等式,即可求出$\frac{x}{2x+3y}$+$\frac{3y}{x+6y}$的最大值.

解答 解:设2x+3y=m,x+6y=n,则x=$\frac{2m-n}{3}$,y=$\frac{2n-m}{9}$,(m>0,n>0)
∴$\frac{x}{2x+3y}$+$\frac{3y}{x+6y}$=$\frac{2}{3}$-$\frac{n}{3m}$+$\frac{2}{3}$-$\frac{m}{3n}$≤$\frac{4}{3}$-$\frac{2}{3}$=$\frac{2}{3}$,
当且仅当m=n时取等号,即$\frac{x}{2x+3y}$+$\frac{3y}{x+6y}$的最大值为$\frac{2}{3}$.
故选:D.

点评 本题考查$\frac{x}{2x+3y}$+$\frac{3y}{x+6y}$的最大值,考查换元法、基本不等式的运用,正确换元是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.用系统抽样的方法从个体数为1003的总体中抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的概率为(  )
A.$\frac{1}{1000}$B.$\frac{1}{1003}$C.$\frac{50}{1000}$D.$\frac{50}{1003}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}、{bn}满足a1=-1,b1=1,an+1=$\frac{{a}_{n}}{1-4{b}_{n}^{2}}$,bn+1=an+1bn,点Pn的坐标为(an,bn),且点P1、P2在直线l上.
(1)求直线l的方程;
(2)用数学归纳法证明:对任意n∈N*,点Pn(an,bn)在直线l上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设10件产品中有4件不合格,从中任意取出2件,那么在所得的产品中发现有一件不合格,则另一件也是不合格品的概率(  )
A.$\frac{2}{5}$B.$\frac{2}{3}$C.$\frac{1}{15}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知AB是半圆O的直径,O是半圆圆心,AB=8,M、N、P是将半圆圆周四等分的三个分点.
(1)从A、B、M、N、P这5个点中任取3个点,求这3个点组成等腰三角形的概率;
(2)在半圆内任取一点S,求△SOB的面积大于4$\sqrt{2}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设α、β表示不同的平面,l表示直线,A、B、C表示不同的点,给出下列三个命题:
①若A∈l,A∈α,B∈l,B∈α,则l?α
②若A∈α,A∈β,B∈α,B∈β,则α∩β=AB
③若l∉α,A∈l,则A∉α
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若实数a、b、c满足a+b+c>6,则a、b、c的值(  )
A.都大于2B.至少有一个大于2C.都小于2D.至少有一个小于2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a>0,函数f(x)=$\left\{\begin{array}{l}{2+(x-a)^{2},x<\frac{1}{3}}\\{ax+lo{{g}_{3}}_{\;}x,x≥\frac{1}{3}}\end{array}\right.$的最小值为1,则a=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系.已知直线l:ρ=-$\frac{6}{3cosθ+4sinθ}$,曲线C:$\left\{\begin{array}{l}x=3+5cosα\\ y=5+5sinα\end{array}\right.$(α为参数).
(Ⅰ)将直线l化成直角方程,将曲线C化成极坐标方程;
(Ⅱ)若将直线l向上平移m个单位后与曲线C相切,求m的值.

查看答案和解析>>

同步练习册答案